
Performance Prediction upon Toolchain Migration

in Model-Based Software

Aymen Ketata

Electrical and Computer Engineering

University of Waterloo

Waterloo, Canada

maketata@uwaterloo.ca

Carlos Moreno

Electrical and Computer Engineering

University of Waterloo

Waterloo, Canada

cmoreno@uwaterloo.ca

Sebastian Fischmeister

Electrical and Computer Engineering

University of Waterloo

Waterloo, Canada

sfischme@uwaterloo.ca

Jia Liang

Electrical and Computer Engineering

University of Waterloo

Waterloo, Canada

jliang@gsd.uwaterloo.ca

Krzysztof Czarnecki

Electrical and Computer Engineering

University of Waterloo

Waterloo, Canada

kczarnec@gsd.uwaterloo.ca

Abstract—Changing the development environment can have
severe impacts on the system behavior such as the execution-
time performance. Since it can be costly to migrate a software
application, engineers would like to predict the performance
parameters of the application under the new environment with
as little effort as possible.

In this paper, we concentrate on model-driven development
and provide a methodology to estimate the execution-time per-
formance of application models under different toolchains. Our
approach has low cost compared to the migration effort of an
entire application. As part of the approach, we provide methods
for characterizing model-driven applications, an algorithm for
generating application-specific microbenchmarks, and results on
using different methods for estimating the performance. In the
work, we focus on SCADE as the development toolchain and use
a Cruise Control and a Water Level application as case studies
to confirm the technical feasibility and viability of our technique.

Index Terms—Model-based development, Migration, Auto-
mated Code Generation, Estimation, Prediction.

I. INTRODUCTION

Model Driven Development (MDD) is a software develop-

ment approach where the source code can be automatically

generated from the models. MDD is used to build an abstract

representation of the system to improve productivity and

communication among the managers, architects, designers, and

developers. Some modeling languages such as UML, SysML,

and modeling tools such as Eclipse modeling framework

plugins are used in MDD development [22].

MDD requires specific toolchains to transform abstract

models into executable code for the target system. A toolchain

is a set of software tools used to generate code, compile and

link, and it provides the binary code. In the context of real-

time safety-critical applications, a qualified toolchain assures

that the assertions and requirements claimed at the top-level

are valid at the target programming language level.

Developers are reluctant to upgrade the toolchain while

developing application models because, among other things,

even a small change in the toolchain can incur a migration cost

and can add complexity in building the program. Changes in

the toolchain can significantly affect the system behavior such

as the execution performance of the program created with

one toolchain. Various factors might motivate the migration

decision to a new toolchain. For example, the new toolchain

might offer new features that we want to benefit from or the

old toolchain might lack support and maintenance. We focus

in this paper on the performance parameters as the major

decision factor of the migration. Predicting the performance

parameters, before migrating the model to the new toolchain,

can significantly help making the upgrade decision. Porting

the application to a new toolchain should reflect a deep

understanding of the performance changes under the new

toolchain. The lack of structured and effective techniques to

migrate the application to the new toolchain may lead to

engineering work and an expensive migration with uncertain

outcomes. This issue is critical in the embedded systems as

the use of a new toolchain may also add safety and security

issues. The upgrade of a verified toolchain such as the SCADE

Systems is more difficult due to the strict requirements of the

generated binary code [1], [18].

We provide a framework to predict the execution-time

performance of a model-driven application on a new toolchain

without migrating the entire application from the original

toolchain. As the migration cost is in principle proportional to

the amount of engineering work, our framework provides an

automation process to extract and generate application-specific

microbenchmarks. The execution-time estimates are relevant

for the toolchain upgrade decision due to the trade-off between

the cost and performance benefits. We present an automated

technique to efficiently analyze the application model with

respect to the new toolchain before the migration process as

we can extrapolate and produce an accurate prediction of the

execution-time performance.

The remainder of this paper proceeds as follows: Section II

presents the problem statement and outlines our approach.

Section III defines the used technical terms. In Section IV, we

discuss several studies presenting ideas or techniques related

to our work. Section V provides an overview of our developed

tool. Finally, we describe our experimental setup in Section VI

and results in Section VII. We discuss the validity and usability

of our framework in Section VIII, followed by suggestions for

future work and concluding remarks in sections IX and X.

II. OVERVIEW

This section introduces the problem that our work addresses

and provides an overview of our proposed approach. Figure 1

illustrates the problem statement.

A. Problem Statement

Given two toolchains T1 and T2 and assuming a model

has been developed and compiled to an executable under T1 ,

predict, with minimal porting effort expressed as the number

of changes in the model, the execution-time performance, in

the same execution environment, of the executable generated

using T2 .

Extrapolate

Inexpensive

migration

Extraction

 and

generation

Expensive

migration

Performance

parameteresData

Application

model

Application

model

T1 T2

Application-speci�c

microbenchmark

Application -speci�c

microbenchmark

BenchmarkBenchmark

Benchmark

Fig. 1. Description of the problem statement

We refer to the solid lines path in Figure 1 as the anticlock-

wise path or inexpensive path. It represents the workflow of our

approach to estimating the performance parameters. It is based

on the extraction of metrics from the application model in T1 ,

and the generation of application-specific microbenchmarks

in T1 . The next step is the migration of the microbenchmarks

from T1 to T2 . We explain the details of this path in Section V.

We refer to the dashed lines path as the clockwise path or

expensive path. It represents the steps to follow if the entire

application was migrated from T1 to T2 , which is in principle

what we try to avoid for the purpose of performance prediction.

B. Our Approach

Our proposed approach allows developers to avoid porting

the entire application when they face the decision of upgrading

a development toolchain. Instead, we can predict, through

benchmarking analysis, the performance of the application

under the new toolchain T2 . This estimation is done at an

early stage and avoids the cost of the migration of the entire

application. The software artifacts such as the requirement,

the specification, and the design documents that describe the

abstraction of the final software system should be used to un-

derstand the application characteristics. To this end, we need to

define the properties of the application under toolchain T1 that

have an impact on the performance and derive application-

specific microbenchmarks. To generate microbenchmarks that

are representative of the application model, we use software

metrics that capture the features and patterns in the application

model that are relevant to its performance. Our approach fo-

cuses on the performance of model-based application relative

to a toolchain rather than the application’s architecture or

design.

Our framework follows the inexpensive path from Figure 1.

The framework is based on a set of tools that can automatically

analyze the application, identify relevant characteristics in the

model, and generate microbenchmarks that are representative

of the original model. Users of the framework need to follow

these steps:

1) Measure application model with characteristic met-

rics: The first step is to take the application model

and characterize the model using a set of metrics. In

our work we only use the ratio metric, however, other

metrics such as Cyclomatic complexity, Helastead com-

plexity, and Fan In/Fan-out [19], [27] are also applicable.

2) Encode measurements in constraints: The next step

is to use the measurements and set up a series of

constraints. These constraints will ensure that generated

microbenchmarks are representative of the application

model and maintain the original performance-relevant

properties.

3) Generate application-specific microbenchmarks: The

constraints permit multiple solutions. Depending on the

required precision of the prediction, users then generate

microbenchmark models from solutions to the constraint

set. Being a statistical process, we can expect that

increasing the number of microbenchmark models will

lead to a lower standard error in the prediction

4) Port microbenchmarks and generate code: The mi-

gration of the microbenchmarks to the new toolchain

should be relatively straightforward compared to the

migration of the entire application model. Consequently,

the porting effort will be inexpensive with respect to

the required engineering effort. After porting, the user

will compile the microbenchmarks on both toolchains

and prepare the microbenchmarks for execution on the

target platform.

5) Benchmark microbenchmarks on the target platform:

By benchmarking the different models under the two

toolchains and analyzing the results, the user can ex-

trapolate an estimate of the execution-time performance

of the entire application as migrated under the new

toolchain.

Case studies of the SCADE toolchain for MDD provide

evidence that our approach and framework are feasible. We

used the Cruise Control and Water Level applications devel-

oped under two versions of SCADE systems and compared

the predicted results to the migrated ones. Our estimates were

reasonably accurate and correctly predicted that the executions

of the applications under SCADE 6 were faster with respect

to the applications under SCADE 5.

We remark that our approach does not predict the worst-

case execution time (WCET). The presented method and tool

constitute decision support to lower the risk when consider-

ing switching between toolchains. They focus on predicting

average expected performance parameters while migrating

toolchains and not on extremes like the WCET, which re-

quires additional analysis and optimization. WCET analysis

is required once the entire model is migrated to a different

toolchain. For safety-critical systems, regulations most likely

will require that a new analysis be made upon any change in

the system, regardless of any estimates that would have been

made prior to the changes.

III. BACKGROUND AND TERMINOLOGY

The SCADE Suite is a model-based development environ-

ment specifically tailored for safety-critical systems and often

used in the avionics domain. The SCADE Suite is an inte-

grated development environment that includes model-based

design, simulation, verification, and qualified code generation.

As SCADE provides a synchronous approach for reactive

programs, it is suitable for developing safety-critical embedded

software such as automotive and avionics applications [11].

Estimation or Parameter Estimation is the process of obtain-

ing an approximate value of a parameter given available, and

in general insufficient, data. In statistics, estimation usually

refers to finding a function f of an observation vector X such

that the error |f(X) − θ| when estimating the parameter θ

given an observation X is minimized in some sense [28].

Information Extraction (IE) recognizes entities and relations

from sets of data and transforms them into structured represen-

tations. In this paper, we focus on the extraction techniques

used to generate application-specific microbenchmarks from

the application models.

Migration is the conversion of a model developed under

one version of a toolchain to either a new version of the

same toolchain or a different toolchain. Unit, regression, and

integration tests should be performed to validate the migration

and ensure the required quality. The migration can affect the

application behavior such as the performance parameters. The

migration may be time-consuming, costly, and hard to perform

manually. The automation of the migration process could be

used to reduce cost, but there are still important challenges to

migrate concrete models [25].

Application Model refers to a set of large and complex mod-

els developed for a specific domain such as aircraft engines.

Building such an application model requires the integration of

physical, mathematical, and computational models.

An application-specific microbenchmark or fingerprint

model is a reduced size model that shares common charac-

teristics with the entire application model. Despite the fact

that the microbenchmarks are randomly generated, they are

representative of the application as they are constrained to a

specified set of metrics extracted from the application.

Ratio metric is a software metric that consists of the

fractions of each type of blocks in a model. That is, for each

type of block, the number of blocks of that type divided by the

total number of blocks is associated with the type. This metric

does not consider I/O connections or the specifics of the design

and structure of the model. Given a model, the computational

cost of extraction of the ratio metric is linear with the number

of blocks. We present a more detailed discussion and intuition

on why this metric is relevant to the performance analysis in

Section VI-B.

IV. RELATED WORK

The notion of software metrics is one of the key aspects

in our method, as it is what captures the characteristics of

a model that are relevant to its performance. Several studies

exists in the literature that deal with this idea in the context

of programming languages [7], [14], [15]. These software

metrics include: Lines of Code, Cyclomatic complexity, Heal-

stead complexity, Cohesion and Coupling, Fan-In/Fan-Out

and NPath. The Cyclomatic complexity [27] indicates the

complexity of the application. It is computed based on the in-

dependent paths in the application generated with conditional

statements. NPath complexity [10] measures the number of

possible outcomes from the application. It might be hard to

compute for large models that have nested conditional blocks.

Fan-In/Fan-out [19] focuses on the information flow and

measures the connections among the application components.

Cohesion refers to the module responsibility and functionality

as it expresses the degree of interdependency between the

elements of the module. Coupling refers to the degree of

dependency between the application modules. It explains the

strength of the connection between the modules. Though these

studies look for metrics that describe and capture the important

characteristics of an application, like our work, they focus on

program maintainability rather than performance and thus are

not directly relevant to the problem that we are addressing.

We reviewed the applicability of software metrics to

SCADE models. The work in [23] implemented a SCADE

metric interpreter framework to extract the characteristics of

the SCADE models. Some other related software metrics such

as controllability and observability were presented in [12].

These metrics analyze the testability of the SCADE programs.

Testability metrics try to identify the different parts of the

application that are critical, prone to errors, and difficult to

validate. Similar ideas have also been investigated in the

context of migrating legacy applications to modern program-

ming languages with focus on the quality control of the

application [24].

The survey [3] reviews research work that focuses on

the performance prediction of model-based applications. The

proposed approaches address the integration of performance

analysis at early stages of the development process. Several

works [16], [29] review model-based performance prediction

approaches. These studies focus on the importance of conduct-

ing performance analysis at different stages throughout the

software development cycle. Performance prediction requires

a deep analysis of the system architecture from the requirement

and specification phase to the configuration and deployment

phase. Several works explore the performance requirements

and try to predict the performance parameters at early stages

to identify the issues of the concrete integration [13]. Some

approaches, such as [20], focus on the application behavior

after changes in source code and its impact on the application

environment, dependencies, and performance. By contrast, our

approach focuses on the changes introduced by the migration

to a new toolchain.

Liu et al. [21] present an analytical approach that relies on

stochastic modeling to predict the performance parameters of

component-based applications. Our approach is statistical and

based on measurement data from the actual target platform.

The tool SoftArch/MTE [17] focuses on the evaluation of test-

beds generated under various architectures of the application to

help choose a particular architecture for the application design.

In contrast, we estimate the effect of the migration between

toolchains for the same application.

V. METHODS AND TOOLS

We now present the implementation of the framework and

the methods and tools supporting it. To be able to evaluate the

feasibility and viability of our concepts, we developed a tool

that can generate application-specific microbenchmarks from

a SCADE application model. Figure 2 gives an overview of

the process.

We start by extracting the metric from the model. We focus

on the ratio metric to analyze the models and identify its

characteristics. Figure 3 is an example of a SCADE model.

It has six math operators, one comparison operator, and one

Boolean operator.

Based on the ratio metric, we developed a set of TCL scripts

that analyze the application and extract the properties of the

models. We encode the metamodels of the modeling language

and the ratio metric extracted values as a set of constraints and

feed them into a solver. We use Clafer [2] as the constraint

language and its associated solver, which is based on the

Choco constraint solver. Table I shows block occurrence and

ratio data for the model in Figure 3.

Microbenchmark

Application
model

CLAFER
model

SCADE textual
model

Veri�ed
SCADE textual

model

C code Run-time data

Metric
extraction

CLAFER generator
SCADE parser

Causality checker

KCG Execution
on target

Fig. 2. Workflow generation

Fig. 3. SCADE model example

Given the extracted measurements, we produce constraints

for the solver tool. For example, given that the size of the

microbenchmarks is n, the number of Plus operators would be

50% ∗n, the number of Multiply operators would be 25% ∗n,

and the number of And operators would be 12.5% ∗ n

TABLE I: Extracted measurements data

Occurrence Ratio

Plus 4 50%

Multiply 2 25%

LessOrEqual 1 12.5%

And 1 12.5%

Clafer (class, feature, reference) is a lightweight modeling

language with first-order relational logic. The Clafer compiler

takes a model written in the Clafer modeling language as input

and does some processing before invoking a backend solver

to output instances conforming to the input model. Multiple

solvers are supported such as SAT (Boolean satisfiability),

SMT (satisfiability modulo theories), and CSP (constraint

satisfaction problem). In this paper, the input is a SCADE

metamodel written in Clafer, conjointed with the metric data

constraints, and the output is a random SCADE model gener-

ated by the CSP solver.

Listing 1 shows an example of the Clafer representation

of the constraint: we want to generate exactly one addition

operator either integer or real. Line 1 in Listing 1 specifies

that plus_Int is an instance of the class MathBlockInt. The

cardinality constraint 0..n indicates that we would like to

generate between 0 and n instances. Line 3 represents the

constraint the sum of the number of instances of plus_Int and

the number of instances of plus_Real must be equal to 1.

p l u s _ I n t : Ma thBlock In t 0 . . 1
p l u s _ R e a l : MathBlockReal 0 . . 1
[# p l u s _ I n t + # p l u s _ R e a l =1]

Listing 1. Metric data encoded in Clafer

Clafer generates random solutions, subject to the metric

data and SCADE metamodel constraints, which we parse and

convert to textual SCADE language. Textual SCADE is a

declarative language; each line defines an element (e.g., one

connection) in the model structure. Thus, the order of the lines

is usually not relevant as in the case of imperative languages

such as C.

For each set of constraints, we generated multiple random

microbenchmarks. This is necessary to obtain a statistical

characterization of the microbenchmark models’ performance,

which is necessary for the prediction. Listing 2 shows an

example of the textual representation of one generated mi-

crobenchmark in the SCADE language. In this example, the

first line indicates that we have an addition between the inputs

intInput1 and intInput2, and the result is stored in the variable

plus_Int0.

f u n c t i o n microbenchmark (/∗ I n p u t s , O u t p u t s ∗ /)
v a r

/∗ Loca l v a r i a b l e s ∗ /
l e t

/∗ Update i n p u t s ∗ /

p l u s _ I n t 0 = i n t I n p u t 1 + i n t I n p u t 2 ;
p l u s _ I n t 1 = p l u s _ i n t 0 + i n t I n p u t 3 ;
and_Bool0 = b o o l I n p u t 2 and L e s s O r E q u a l _ I n t 0 ;
L e s s O r E q u a l _ I n t 0 = m u l t i _ I n t 0 <= p l u s _ I n t 0 ;
m u l t i _ I n t 0 = p l u s _ I n t 1 ∗ i n t I n p u t 4 ;
m u l t i _ I n t 1 = i n t I n p u t 5 ∗ p l u s _ I n t 0 ;

/∗ Update o u t p u t s ∗ /
t e l

Listing 2. SCADE code of a sample microbenchmark

We generated C code using the toolchains KCG5.1 and

KCG6.4 to compare the performance of the two toolchains.

KCG is the automated code generator tool used to generate C

code from SCADE models. KCG5.1 is the code generator tool

used for SCADE 5 models, and KCG6.4 is the code generator

tool used for SCADE 6 models. We automated the entire

process flow to run the experiments. The scripts encode the

metric, extract the application characteristics, generate SCADE

microbenchmarks, run the SCADE checker, fix any causality

errors by adding delay blocks, and generate C code. We

compiled and executed the generated code for benchmarking.

The DataMill infrastructure was used in our benchmarks

to evaluate the performance of the C code generator of

the SCADE toolchain. DataMill offers various architectures

and software and hardware factors that can be used in the

performance evaluation [9]. We used the i686 and x86_64

architectures to benchmark the C code, and we used the same

hardware and software factors for the benchmarks.

A. The Constraint Solver

CSP [26] is a class of problems originating from the artifi-

cial intelligence community. A CSP problem is conventionally

specified as a triple: V the set of variables, D the set of the

variables’ domains, C the set of constraints. A solution to a

CSP problem is an assignment for each variable to a value in

its domain such that none of the constraints are violated.

A CSP solver searches for solutions of a CSP problem by

constructing an implicit search tree, where the variables are

vertices and edges are assignments. The solver traverses the

search tree in pre-order looking for leaf vertices such that every

variable is assigned to a value, and none of the constraints are

violated. These leaves are the solutions. The CSP backend for

Clafer is implemented with the Choco library which supports

integer variables and set variables over integers. Set variables

are necessary and sufficient to encode the relational semantics

of Clafer. For performance reasons however, the backend will

optimize by using integer variables in place of set variables

whenever possible. Choco’s solving algorithm is based on an

implicit search tree. The tree traversal can broadly described

in three steps starting at the root node:

1) Variable selection: Pick an unassigned variable using a

heuristic. Most illustrations of CSP search trees would

label the current node with the picked variable. Suppose

the heuristic picked the integer variable i with domain

{0, 1, 4}.

2) Decision: Assign the picked variable to a value in its

domain and move down the current node’s left branch.

The right branch corresponds to the negative decision

for when the algorithm backtracks to this node in the

future. For example, if the left branch is i = 1 then

the right branch is i 6= 1. More specifically, the left

(respectively right) branch sets the domain of variable

i to {1} (respectively {0, 4}). There are other ways of

making decisions such as domain splitting.

3) Constraint propagation: Infer new domains based on

the available constraints. For example, if i 6= j is a

constraint, then remove 1 from the domain of variable j

because assigning j to 1 will violate the constraint. If 1 is

the only value in the domain of j, then the search entered

a contradiction and can no longer proceed because the

constraint i 6= j is violated. The search then backtracks

up the left branch(es) and goes down the nearest right

branch and proceeds from there. Goto step 1 for the

current node and repeat.

To generate random solutions, we modified the underlying

CSP solver to construct the search tree randomly, i.e. the

vertices/variables and edges/assignments are chosen randomly.

Each search tree is used to generate only one solution. To

generate n solutions, we generate n random search trees. The

solutions from this approach are random in the sense that every

solution has a non-zero probability of being found. However,

the probability distribution is not uniform.

B. Generation of Random Models

Model generation by searching random solutions to the

constraints introduces some important challenges such as the

potential production of invalid models. A model is considered

invalid, if it does not meet the language requirements. In fact,

even if the generated models satisfy the syntactic constraints

of the modeling language, they might still not satisfy the

semantic logic behind. In our study, SCADE is a synchronous

language that guarantees that the data flow is immediately

computed at each cycle with no physical latency. A loop in

the generated model violates this rule, and the checker tool

generates a causality error [4]. Such an error is not restricted

to the use of SCADE and can occur in other synchronous

modeling languages.

...
+

+ +

+

Fig. 4. Example model with causality error

In order to fix this issue, we developed a script that parses

the generated model, and adds delay blocks to break the

cycles [6].

SCADE imposes some restriction such as maintaining the

same data flow and prohibiting mixed data type. Such require-

ments were encoded as a set of constraints in Clafer.

VI. EXPERIMENTATION

Given that we want to generate small-sized microbench-

marks that are easy to migrate, we fixed the size of the

microbenchmarks. In that sense, the use of a constraint solver

is not an issue.

A. Experimental Setup

The experiment was designed to run on DataMill. Several

architectures are used for the benchmarking such as i686, and

x86_64. We developed scripts to setup the experiment, run it

and collect the data. The setup script uses GCC to compile

the generated C code with no optimization flags. While

running the experiment, we measured the execution-time of

the microbenchmarks. The main function for the generated C

code calls the main node of the microbenchmark. In other

terms, the microbenchmark function would correspond to a

call to one clock tick on the SCADE reduced model, and the

data flow would pass through all the blocks of the model.

Figure 5 shows the execution-time measurement. In the first

step, we warmed up the system to compensate for measure-

ment errors due to memory caches, buffers, etc. This step is

important as it warms up the caches in the system. In the next

step, we measured the execution of the microbenchmark code

several times. The last step is the calculation of the measured

Warm-up

Measurements

Calculation of

execution-time

Fig. 5. Execution-time measurement

execution-time, and it is based on the different measurements

of the previous step. The measured data is stored in log files.

After collecting the data from DataMill, we performed sanity

checks on the data. For example, we checked for non-negative

execution-time values. We also inspected the distribution of the

measured data by producing q-q plots and histograms. Figure 6

is an example that shows the q-q plot of the mean execution-

times of 1000 microbenchmarks of the Water Level application.

The x-axis shows the theoretical mean values, while the y-axis

shows the sample values. The linearity of the points in the

plot suggests that the data is normally distributed which is

reasonable to expect.

●
●

●
●

●●

●

●
●

●
●●

●●
●
●
●●●

●●
●●●

●●●
●●●
●●●
●●
●●●
●●●●●●

●●●
●●●
●●●●●●●●

●
●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●
●●●●●●

●●●●●●
●
●
●●
●●●●●

●
●●
●●●

●●●
●●

●●●
●
●●●

●●

●

●
●

5.0

7.5

10.0

12.5

15.0

−2 0 2

Theoretical

S
am

p
le

Fig. 6. Q-Q plot of the mean execution-time of the microbenchmarks of the
Water Level application

As the input values of the model can affect the execution-

time, the benchmarking process was designed to average out

this effect. Random input values are generated for each exe-

cution of each microbenchmark model. Each microbenchmark

is executed many times (10000 times) with randomly chosen

inputs. The execution-time of one microbenchmark is given by

the mean value of these executions. The use of random inputs

allows the exploration of different paths in the code to obtain

an “average behavior” that properly describes the average

execution and average code coverage. If a probabilistic model

of the inputs for the given application or application domain is

available, such model should be used as the source of random

values for the inputs in the benchmarking process. This has the

advantage that the execution is now statistically representative

of the execution that the system will exhibit when in actual

operation; thus, the prediction of the performance is specific

to the real operating conditions under which the system will

execute.

The hardware environment can also introduce bias in the

execution performance. The execution-time can be mistak-

enly measured if executed on an exclusive architecture. The

DataMill project solves this issue and proposes various archi-

tectures to benchmark the generated C code easily [9]. A set

of scripts is used to setup the environment, run and collect the

execution-time across several architectures.

B. Estimating Performance Parameters

Let P be a model with |P| blocks, and consider toolchains

T1 and T2 . Let b1, b2, · · · , bc denote the C classes of blocks in

the toolchains. For example, in SCADE, they would represent

addition blocks, multiplication blocks, logical AND blocks,

etc. Let τ
(v)
k

be the execution-time of the fragment of code

generated for blocks of type bk under toolchain Tv . We should

expect execution-time for a particular type of block to be

different under each toolchain, since the code generator is

different. On the other hand, we assume a fixed execution-time

for each type of block under the same toolchain, regardless of

configuration and interaction with neighboring blocks. This is

a reasonable approximation if the code generator is not highly

optimizing, which is the case for tools that generate safety-

critical qualified code such as SCADE.

Let pk denote the fraction of blocks of type bk in P , and

let T (v), with v = 1, 2 be the average execution-times of the

model’s main function generated by each of the toolchains

Tv . The averages are considered over the population of all

possible models with |P| blocks that maintain the fractions

pk for each type of block. Notice that data-flow based

models such as SCADE have a directed acyclic graph (DAG)

representation [8]. Evaluation of the model’s main function

requires traversal of the graph, either in a breadth-first traversal

until reaching all of the outputs or as a topological sort. In

either case, the complexity of the operation is O(V + E)
where V is the number of vertices and E is the number of

edges [8]. A further observation is that since blocks have

inputs and outputs, and outputs cannot be “short-circuited”

together, then each input can only be connected to one output.

Since each block has O(1) inputs, then E = O(V), and

thus evaluation of P ’s main function takes O(|P|) operations.

Thus, we have

T (1) = |P|

C
∑

k=1

α
(1)
k

pkτ
(1)
k

(1)

T (2) = |P|
C
∑

k=1

α
(2)
k

pkτ
(2)
k

(2)

where the values α
(v)
k

account for the average fraction of

activity that each type of block in the model is exercised

(including the multiplicative constant hidden in the big-Oh

notation). If we consider a probability distribution of the

inputs that does not vary for the different models, then clearly

the values α
(v)
k

are fixed and determined by the various

compatible ways to connect outputs of blocks to inputs of

other blocks and the average paths of propagation of input

data (which depend both on the structure of the model and

the data).

Consider models with |P ′| blocks that maintain the fractions

of each type of block, p1, p2, · · · , pc. It is reasonable to expect

that the values of each α
(v)
k

will be the same for models with

|P ′| blocks, since the fractions of each type of block pk affect

the possible configurations in which the sets of blocks can

occur. Then, the average execution-times T ′(v) for models of

size |P ′| are

T ′(1) = |P ′|

C
∑

k=1

α
(1)
k

pkτ
(1)
k

(3)

T ′(2) = |P ′|

C
∑

k=1

α
(2)
k

pkτ
(2)
k

(4)

From equations (1), (2), (3) and (3), we obtain

T (2)

T (1)
=

T ′(2)

T ′(1)
=

C
∑

k=1

α
(2)
k

pkτ
(2)
k

C
∑

k=1

α
(1)
k

pkτ
(1)
k

⇒ T (2) = T (1) T ′(2)

T ′(1)
(5)

If T̂ (1) and T̂ (2) are the execution-times for a given model

(as opposed to the average execution-time over all possible

models of this size), then Equation (5) yields an approximation,

allowing us to obtain an estimate of the execution-time under

T2 given a statistical representation of T ′(1) and T ′(2):

T̂ (2) ≈ T̂ (1) T ′(2)

T ′(1)
(6)

Estimation of the variance is done in a similar way; the

variances of T (v) are the result of the variances of the

individual execution-times for the blocks, τ
(v)
k

, since all of

the other terms are constants, provided that the the fractions

of the types of blocks are preserved. Thus, assuming that the

variables τ
(v)
k

are uncorrelated, we have:

Var
(

T (v)
)

= |P|

C
∑

k=1

β
(v)
k

Var
(

τ
(v)
k

)

(7)

where the values β
(v)
k

depend exclusively on the values of α
(v)
k

and the probability distribution of the τ
(v)
k

variables.

Following a reasoning identical to that for the execution-

time, we obtain a similar formula for the estimation of the

variance of the execution-time under the new toolchain:

Var
(

T̂ (2)
)

≈ Var
(

T̂ (1)
) Var

(

T ′(2)
)

Var
(

T ′(1)
) (8)

1) Estimating Ratios from T1 to T2 : Equations (6) and (8)

give us an estimator for the parameters for models of one size

based on the ratio of the parameters for models of a different

size when migrated from T1 to T2 . Thus, we estimate these

ratios based on sampling them through multiple randomly

generated fingerprint models of a fixed size.

Each randomly generated model is executed multiple times

with randomly selected input data to obtain an estimate of

the execution-time’s mean and variance for the particular

fingerprint model. We repeat this under both toolchains, to

obtain one sample of the ratio between the parameters (mean

and variance) under both toolchains. Assuming that both

mean and variance, seen as random variables with respect to

the population of all fingerprint models, follow a Gaussian

distribution with non-zero mean, we empirically verified that

their ratio follows a Gamma distribution. Thus, the mean of

the samples obtained for each fingerprint model provides an

adequate estimator for the required parameters.

VII. RESULTS

We present and discuss in this section the results of our

case study benchmarks. We tried our approach on several

applications provided as part of the SCADE software. We

refer to these applications as validation models as they are

provided as example applications, and the models are available

in both version of SCADE. We used the SCADE example

applications Cruise Control and Water Level. We developed

another validation application that used a limited set of

blocks, it used only Math operators such as addition and

multiplication. For these applications, we had the models under

SCADE 5 and the migrated models under SCADE 6. The

microbenchmarks ratios represent the estimated results using

our approach following the inexpensive path of Figure 1. The

application ratios represent the ratios of the migrated models

by following the expensive path of Figure 1. We calculate the

mean execution-time of the different executions with random

inputs. The application ratio is the mean execution-time of the

entire application in SCADE 6 divided by the mean execution-

time of the migrated application in SCADE 5. We compute

the ratio of the execution-time for each microbenchmark. We

refer to the mean value of the ratio of the microbenchmarks

as the microbenchmarks ratio. We used the R boot package

to compute the ratios and the 95% confidence intervals of the

microbenchmarks [5].

Table II shows the mean execution-time benchmarking

results of the validation models Math operators application,

the Water Level application and the Cruise Control application.

The rows show the target architectures that we used in our

benchmarks, and the columns show the application ratio and

the microbenchmarks ratio. The ± refers to the margin of

error computed by 95% confidence interval. These results are

obtained by several executions of the C code with random

inputs after a warm up phase of the system as explained in

Section VI.

The Math operators application has the smallest difference

between the estimated ratio (the microbenchmarks ratio) and

the actual ratio value (the application ratio) in both architec-

tures. This suggests that complex models may be subject to

lower accuracy in the prediction. For example, the introduction

of multiple execution paths by conditional blocks could justify

such a difference. The benchmarking results suggest that the

generated models were executed faster in SCADE 6 than

SCADE 5. The entire application shows the same aspect

for the evaluation of the execution-time. The above results

show that the estimated ratios are consistent with the actual

application ratios. Both the estimated and the migrated results

show a speedup of the models when migrated to SCADE 6.

TABLE II: Execution-time ratio results
Architecture

i686 x86_64

Math Operators

Application Ratio 0.724±0.0007 0.664±0.002

Microbenchmarks Ratio 0.789±0.146 0.592±0.012

Water Level

Application Ratio 0.489±0.001 0.454±0.001

Microbenchmarks Ratio 0.421±0.008 0.240±0.008

Cruise Control

Application Ratio 0.791±0.011 0.325±0.001

Microbenchmarks Ratio 0.444±0.011 0.292±0.013

Even though the accuracy of the estimates is not too high,

we notice that the framework gives a reasonable prediction

of the performance evolution of the application. We notice

that the 95% confidence intervals are tight which suggests that

the effect of measurement errors and noise does not play a

significant role in our results.

We can estimate that our method prediction is off by

approximately 28% with respect to the correct performance for

the migrated application (the geometric mean of actual ratio to

predicted ratio is 1.28). A prediction accuracy of 28% can be

useful in practice, since we can get severe performance regres-

sions when migrating a model from one tool to another. Indeed,

we observed performance variations between toolchains of

over 400%; for example, for the microbenchmarks for the

Water Level model, the ratio for the same microbenchmark

executed under SCADE5 vs. executed under SCADE6 varied

from approx. 0.2 to 0.9. Predicting performance change within

28% accuracy is a good starting point in the decision-making

process. Furthermore, for all of the models that we used in

our experiments, our technique correctly predicted whether

performance would improve or deteriorate; we claim that trend

prediction is as important or even more so than the exact

percentage.

We omit the results for the variance prediction. We did

extract these results from the experiments, but the figures that

we obtained were unexpected and looked unreasonable. One

potential reason for this is the completely different way in

which SCADE 5 and SCADE 6 handle the conditional blocks;

from our observations of samples of generated code in both

versions, conditional blocks in SCADE 5 involve execution

of both branches followed by evaluation of the condition to

choose one of the two already computed results. In SCADE 6,

conditionals lead to optimized code: the condition is evaluated

first, and only one of the two branches of the if-else is executed.

This could have a profound impact on the variance of the

execution-time, and, in particular, could have an effect on the

accuracy of the prediction algorithm.

VIII. DISCUSSION

In this section, we discuss some of the important aspects that

we believe have a critical impact on the validity and usability

of our approach. Some of these issues could indeed represent

threats to this validity. They could be related to the modeling

language and the development toolchains. Below are some of

the issues that we have considered:

• Validity of software metrics. The software metrics used

to extract the data about the application models might not

truly capture the application structure and architecture.

For example, we might fail to detect the blocks patterns

presented in the application. These patterns may affect

the execution-time performance. Indeed, the interaction

between connected blocks could have an important im-

pact on the generated code’s computational efficiency

given low-level aspects such as cache, pipelining, or

other hardware-related aspects. This makes us believe

that there may be hard-to-capture underlying patterns

in the structure that could have a significant impact

on the overall performance. Thus, the accuracy of the

prediction might benefit if the used metric would capture

those patterns. The ratio metric proved to give reasonable

results in our case studies, but we have to acknowledge

the possibility that it might be insufficient for some other

cases. We are convinced that this is the most important

area that requires future work. Notice, however, that our

proposed framework is extensible, and practitioners can

use any other metrics that they have developed, and that

may produce good results in the contexts being used.

• Validity under different architectures. We only bench-

marked our experiments on a limited number of archi-

tectures. There are other architectures like ARM, MIPS,

PowerPC, etc. However, Intel x86_64 and i686 cover an

important fraction of the target audience for our method.

Additional architectures will be used in future work.

• Non-uniform random solutions. The constraint solver

does not generate perfectly random solutions, which

could affect the accuracy of the prediction. We inspected

the generated models and found a reasonable diversity in

the models; we trust that this was not an issue in our

experimentation. Moreover, generation of uniform ran-

dom solutions by a constraint solver is a known complex

problem, so our framework could certainly benefit from

any progress that the AI community may make in this

area.

• Variance prediction sensitive to modeling tools. As al-

ready mentioned in Section VII, the modeling tool could

handle conditional and similar blocks in very different

ways that could affect the prediction of the variance. This

is a potentially critical aspect that we believe requires

future work: changes in the variance may have an effect

on estimates of WCET analysis if they were performed

using measurement-based approaches. Even though this

WCET analysis has to be done on the migrated model,

the ability to accurately predict changes in the variance

provides important information with respect to the risks

that the migration could involve.

• Restricted size of microbenchmarks. Conceivably, the

sizes that we chose for the microbenchmarks — which

obey restrictions in the capacity of the constraint

solver — could limit the accuracy of the predictions. The

intuition is that larger microbenchmark models could

have better ability to capture more complex characteris-

tics. As constraint solvers become increasingly powerful,

our framework could in turn benefit from any such

advances.

• Generalization. We believe that our tool can be gen-

eralized and used with any modeling language. In fact,

the benchmark generator uses a model similar to UML

class models and OCL and thus can be used to model

the complete syntax of any language. The grammar of

any modeling language can be captured by our tool

to generate syntactically valid models. As explained in

Subsection V-B, the random generation may require the

use of checking procedures to confirm the validity of the

generated microbenchmarks. Our approach benefits from

the nature of synchronous languages (such as limited

use of iteration); the applicability of our approach to

enterprise systems may not be obvious.

IX. FUTURE WORK

We aim to extend this work by studying the effect of

other software metrics as mentioned in Section VI and the

impact of the input distribution on the output one. We will

study the impact of the data flow of the computations on

the execution-time performance. This may be important as

particular models in a given industrial application may have

known distributions for the input data. A more detailed anal-

ysis of the effect of the distributions could have a positive

impact in the applicability of our methodology. Furthermore,

this could be useful when applying the technique to application

domains instead of specific applications — for a given domain,

typical distributions of input data may be known. We will

also investigate the industrial practicality of our approach on

turbojet engine applications with an avionics partner.

We think that our approach should be evaluated in other

environments, such as Simulink. Comparing and combining

our approach with analytical approaches are important future

research directions.

X. CONCLUSIONS

We presented in this paper a framework to predict the

execution-time performance parameters of model-based appli-

cations under different toolchains. Our approach has low cost

as we avoid the migration cost by automating the migration of

the models between the two toolchains. We can predict the per-

formance parameters with minimal porting efforts expressed

as the number of changes in the model.

To follow our framework, the application should be ana-

lyzed to extract software metrics that are relevant to the mod-

eling language. The metric should be encoded in a constraint

solver to generate application-specific microbenchmarks. The

generated microbenchmarks are representative of the applica-

tion, and the benchmarking of the microbenchmarks provides

an estimate of the execution-time of the application under the

two toolchains.

To illustrate our framework, we presented a SCADE Sys-

tems case study. We verified that our approach produced perfor-

mance predictions that are reasonably close to the performance

that we measure with concrete results.

XI. ACKNOWLEDGEMENTS

The authors would like to thank Michał Antkiewicz and

Ed Zulkoski for fruitful discussions on constraint solvers

and randomness for the solution, Yuguang Zhang and Jean-

Christophe Petkovich for assistance with benchmarking on the

DataMill platform.

REFERENCES

[1] A. W. Appel. Verified Software Toolchain. In Proceedings of the 20th

European Conference on Programming Languages and Systems: Part of

the Joint European Conferences on Theory and Practice of Software,
ESOP’11/ETAPS’11, pages 1–17, Berlin, Heidelberg, 2011. Springer-
Verlag.

[2] K. Bak, K. Czarnecki, and A. Wasowski. Feature and meta-models
in clafer: mixed, specialized, and coupled. In Software Language

Engineering, pages 102–122. Springer, 2011.

[3] S. Balsamo, A. di Marco, P. Inverardi, and M. Simeoni. Model-based
performance prediction in software development: a survey. Software

Engineering, IEEE Transactions on, 30(5):295–310, May 2004.

[4] G. Berry. SCADE: Synchronous Design and Validation of Embedded
Control Software. In S. Ramesh and P. Sampath, editors, Next Gener-

ation Design and Verification Methodologies for Distributed Embedded

Control Systems, pages 19–33. Springer Netherlands, 2007.

[5] A. J. Canty. Resampling methods in r: the boot package. R News,
2(3):2–7, 2002.

[6] J.-L. Colaço and M. Pouzet. Type-based Initialization Analysis of a
Synchronous Data-flow Language . Electronic Notes in Theoretical

Computer Science, 65(5):65 – 78, 2002. SLAP’2002, Synchronous
Languages, Applications, and Programming (Satellite Event of {ETAPS}
2002).

[7] S. D. Conte, H. E. Dunsmore, and Y. E. Shen. Software Engineering

Metrics and Models. Benjamin-Cummings Publishing Co., Inc., Red-
wood City, CA, USA, 1986.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms, Third Edition. The MIT Press, 2009.

[9] A. B. de Oliveira, J.-C. Petkovich, T. Reidemeister, and S. Fischmeister.
Datamill: Rigorous performance evaluation made easy. In Proceedings

of the 4th ACM/SPEC International Conference on Performance Engi-

neering, pages 137–148. ACM, 2013.

[10] M. K. Debbarma, S. Debbarma, N. Debbarma, K. Chakma, and A. Ja-
matia. A Review and Analysis of Software Complexity Metrics in Struc-
tural Testing. International Journal of Computer and Communication

Engineering, 2:129–133, 2013.
[11] F.-X. Dormoy. SCADE 6: a model based solution for safety critical

software development. In Proceedings of the 4th European Congress on

Embedded Real Time Software (ERTS’08), pages 1–9, 2008.
[12] L. du Bousquet, M. Delaunay, H.-V. Do, and C. Robach. Analysis of

testability metrics for Lustre/SCADE programs. In Advances in System

Testing and Validation Lifecycle (VALID), 2010 Second International

Conference on, pages 26–31. IEEE, 2010.
[13] K. Falkner, V. Chiprianov, N. Falkner, C. Szabo, J. Hill, G. Puddy,

D. Fraser, A. Johnston, M. Rieckmann, and A. Wallis. Model-Driven
Performance Prediction of Distributed Real-Time Embedded Defense
Systems. In Engineering of Complex Computer Systems (ICECCS), 2013

18th International Conference on, pages 155–158, July 2013.
[14] N. E. Fenton and M. Neil. Software metrics: successes, failures and new

directions. Journal of Systems and Software, 47(2 – 3):149 – 157, 1999.
[15] N. E. Fenton and M. Neil. Software Metrics: Roadmap. In Proceedings

of the Conference on The Future of Software Engineering, ICSE ’00,
pages 357–370, New York, NY, USA, 2000. ACM.

[16] M. Fritzsche and J. Johannes. Putting Performance Engineering into
Model-Driven Engineering: Model-Driven Performance Engineering. In
H. Giese, editor, Models in Software Engineering, volume 5002 of
Lecture Notes in Computer Science, pages 164–175. Springer Berlin
Heidelberg, 2008.

[17] J. Grundy, Y. Cai, and A. Liu. Softarch/mte: Generating distributed
system test-beds from high-level software architecture descriptions. Au-

tomated Software Engineering, 12(1):5–39, 2005.
[18] M. P. Heimdahl. Safety and software intensive systems: Challenges old

and new. In 2007 Future of Software Engineering, pages 137–152. IEEE
Computer Society, 2007.

[19] S. Henry and D. Kafura. Software structure metrics based on information
flow. Software Engineering, IEEE Transactions on, (5):510–518, 1981.

[20] R. Holmes and D. Notkin. Identifying program, test, and environmental
changes that affect behaviour. In Proceedings of the 33rd International

Conference on Software Engineering, pages 371–380. ACM, 2011.
[21] Y. Liu, I. Gorton, and A. Fekete. Design-level performance prediction

of component-based applications. Software Engineering, IEEE Transac-

tions on, 31(11):928–941, 2005.
[22] T. Mens and P. V. Gorp. A Taxonomy of Model Transformation.

Electronic Notes in Theoretical Computer Science, 152(0):125 – 142,
2006. Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT 2005) Graph and Model Transformation 2005.

[23] K. Ors and B. Laszlo. SCADE interpreter for measuring static and
dynamic software metrics. In Intelligent Systems and Informatics (SISY),

2013 IEEE 11th International Symposium on, pages 123–128, Sept 2013.
[24] G. Pandey, J. Jelschen, and A. Winter. Towards quality models in

software migration. analysis, 1:M2.
[25] L. M. Rose, M. Herrmannsdoerfer, J. R. Williams, D. S. Kolovos,

K. Garcés, R. F. Paige, and F. A. Polack. A comparison of model
migration tools. In Model Driven Engineering Languages and Systems,
pages 61–75. Springer, 2010.

[26] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint program-

ming. Elsevier, 2006.
[27] M. Shepperd and D. Ince. A critique of three metrics. Journal of Systems

and Software, 26(3):197 – 210, 1994.
[28] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye. Probability &

Statistics for Engineers & Scientists. Prentice-Hall, Ninth edition, 2011.
[29] Q. Zhu and P. Deng. Design Synthesis and Optimization for Automotive

Embedded Systems. In Proceedings of the 2014 on International

Symposium on Physical Design, ISPD ’14, pages 141–148, New York,
NY, USA, 2014. ACM.

