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Mathematical Background

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Mathematical Background

● Today's class:
● Review of mathematical background, including:

– Logarithms and some relevant properties
– Arithmetic sums
– Geometric sums
– Recurrence relations
– Permutations and Binomial expansion



  

Logarithms – Basic Properties

● Inverse of exponentials:

If             , then 

More in general, if            , then

y = e x x = ln y

y = ax x = loga y



  

Logarithms – Basic Properties

● Interesting property:  turns multiplicative expr. 
Into additive ones  (why?):

● This has an obvious, yet very interesting, 
consequence (example for log with base 2):

(why is it that interesting?)

log (a⋅b) = log (a) + log (b)

lg(2 x ) = lg x + 1



  

Logarithms – Interesting Properties

● Exponentials grow faster than any polynomial:

for every

lim
n→∞

en

nα = ∞

α > 0



  

Logarithms – Interesting Properties

● Exponentials grow faster than any polynomial:

for every             (huh? Isn't it true for every    ?) 

lim
n→∞

en

nα = ∞

α > 0 α



  

Logarithms – Interesting Properties

● Exponentials grow faster than any polynomial:

for every           

● Thus, logarithms grow slower than any 
polynomial: 

lim
n→∞

en

nα = ∞

α > 0

lim
n→∞

ln n
nα = 0



  

Logarithms – Interesting Properties

● If we start with a value N, divide it by 2, then 
that result we divide it by 2, and so on, until 
reaching 1 or less — Question:  how many 
times did we divide before reaching 1 or less?



  

Logarithms – Interesting Properties

● If we start with a value N, divide it by 2, then 
that result we divide it by 2, and so on, until 
reaching 1 or less — Question:  How many 
times did we divide before reaching 1 or less?

● Follow-up question:  How is this related to the 
idea of binary search?



  

Logarithms – Interesting Properties

● Given a value N, we write it as a decimal 
number (i.e. A sequence of 0 to 9 digits 
representing the value).  Question:  How many 
digits does it take to represent N?



  

Logarithms – Interesting Properties

● Given a value N, we write it as a decimal 
number (i.e. A sequence of 0 to 9 digits 
representing the value).  Question:  How many 
digits does it take to represent N?

● Follow-up question:  How many bits does it take 
to represent N?  (as in, if we write the binary 
representation of N)



  

Logarithms – Interesting Properties

● Given a value N, we write it as a decimal 
number (i.e. A sequence of 0 to 9 digits 
representing the value).  Question:  How many 
digits does it take to represent N?

● Follow-up question:  How many bits does it take 
to represent N?  (as in, if we write the binary 
representation of N)

● Careful:  the exact answer is non-trivial...



  

Arithmetic Sums



  

Arithmetic Sums

● We will be particularly interested in the 
following sum:

∑
k=0

n

k



  

Arithmetic Sums

● We will be particularly interested in the 
following sum:

Anyone remembers?  Anyone ventures to 
obtain a solution? (yourselves, not Googling it!)

∑
k=0

n

k



  

Arithmetic Sums

● How about this variation?

∑
k=0

n

k 2



  

Arithmetic Sums

● How about this variation?

Here's a thought:  Do you think there should be 
any relationship between that sum and the 
following integral?

∑
k=0

n

k 2

∫
0

n

x2dx



  

Geometric Sums

● We will also be interested in the following sum:

∑
k=0

n

ak



  

Geometric Sums

● We will also be interested in the following sum:

Again — anyone remembers?  Anyone 
ventures to obtain a solution?

∑
k=0

n

ak



  

Recurrence Relations



  

Recurrence Relations

● A recurrence relation is a means of defining a 
sequence by specifying the value of an element 
as a function of previous values of the 
sequence  (as opposed to providing an explicit,  
closed-form expression for it).



  

Recurrence Relations

● A recurrence relation is a means of defining a 
sequence by specifying the value of an element 
as a function of previous values of the 
sequence  (as opposed to providing an explicit,  
closed-form expression for it).

● Solving a recurrence relation consists of finding 
a closed-form expression for the sequence  
(that is, given the recurrence relation)



  

Recurrence Relations

● Really simple example:  the sequence
could be as easily specified by stating that:

xn = 2n

xn = xn−1 + 2



  

Recurrence Relations

● Really simple example:  the sequence
could be as easily specified by stating that:

Actually, are we sure about that?

xn = 2n

xn = xn−1 + 2



  

Recurrence Relations

● Really simple example:  the sequence
could be as easily specified by stating that:

Actually, are we sure about that?
 

● Another thought:  anyone sees a similarity 
between the above and the following? 

xn = 2n

xn = xn−1 + 2

dy
dx

= 2



  

Recurrence Relations

● These recurrence relations show up very often 
when analyzing algorithms' performance;  and 
we will prefer a notation that highlights the 
aspect of a function of the variable n, as 
opposed to a sequence.  Thus, the previous 
example, for us in ECE-250, would be written 
as:

f (n) = f (n−1) + 2 ⇒ f (n) = 2n



  

Recurrence Relations

● These recurrence relations show up very often 
when analyzing algorithms' performance;  and 
we will prefer a notation that highlights the 
aspect of a function of the variable n, as 
opposed to a sequence.  Thus, the previous 
example, for us in ECE-250, would be written 
as:

 

(remember that this is still wrong — why?)

f (n) = f (n−1) + 2 ⇒ f (n) = 2n



  

Recurrence Relations

● For the same reason (that these show up very 
often when analyzing algorithms), we'll typically 
deal with (and be interested in) things involving 
powers, logarithms, exponentials, and 
combinations of these.



  

Recurrence Relations

● For the same reason (that these show up very 
often when analyzing algorithms), we'll typically 
deal with (and be interested in) things involving 
powers, logarithms, exponentials, and 
combinations of these.

● For example, if you remember previous slides, 
you should easily solve this one:

f (n) = f (n /2) + 1, with f (1) = 0



  

Recurrence Relations

● For the same reason (that these show up very 
often when analyzing algorithms), we'll typically 
deal with (and be interested in) things involving 
powers, logarithms, exponentials, and 
combinations of these.

● For example, if you remember previous slides, 
you should easily solve this one:

f (n) = f (n /2) + 1, with f (1) = 0



  

Permutations and Binomials



  

Permutations and Binomials

● You certainly remember factorials  (right?)

        n! = n × (n-1) × (n-2) ··· 3 × 2 × 1

● Do you happen to remember what it means?  
(i.e., a physical or geometric or in some way 
practical interpretation of its meaning?)

● We'll look at this more in detail in class 
(additional details in the post-lecture slides)



  

Permutations and Binomials

● Binomial coefficients, the so-called “n choose k” 
and denoted

are closely related to factorials and 
permutations;  we'll discuss and try to see this 
relationship in class  (again, more details in the 
post-lecture slide set)

( )
n
k



  

Permutations and Binomials

● Binomial coefficients, the so-called “n choose k” 
and denoted

are closely related to factorials and 
permutations;  we'll discuss and try to see this 
relationship in class  (again, more details in the 
post-lecture slide set)

( )
n
k



  

Permutations and Binomials

● An important application is the Binomial 
Expansion — to obtain the nth power of (x+y):

( )
n
k(x+ y)n = ∑

k=0

n

xk yn−k
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