Mathematical Background

ERSITY OF

TERLOO

Carlos Moreno cmoreno@uwaterloo.ca EIT-4103

$$\sum_{k=0}^{N} \log k^{0} e^{-x^{2}} dx$$
$$|a+b| \leq |a| + |b|$$
$$e^{\pi i} - 1 = 0$$

https://ece.uwaterloo.ca/~cmoreno/ece250

These slides, the course material, and course web site are based on work by Douglas W. Harder

Mathematical Background

Standard reminder to set phones to silent/vibrate mode, please!

Mathematical Background

- Today's class:
 - Review of mathematical background, including:
 - Logarithms and some relevant properties
 - Arithmetic sums
 - Geometric sums
 - Recurrence relations
 - Permutations and Binomial expansion

Logarithms – Basic Properties

• Inverse of exponentials:

If
$$y = e^x$$
, then $x = \ln y$

More in general, if $y = a^x$, then $x = \log_a y$

Logarithms – Basic Properties

Interesting property: turns multiplicative expr.
Into additive ones (why?):

$$\log(a \cdot b) = \log(a) + \log(b)$$

• This has an obvious, yet very interesting, consequence (example for log with base 2):

$$\lg(2x) = \lg x + 1$$

(why is it that interesting?)

Logarithms – Interesting Properties

• Exponentials grow faster than any polynomial:

$$\lim_{n\to\infty} \frac{\mathrm{e}^n}{n^\alpha} = \infty$$

for every $\alpha > 0$

Logarithms – Interesting Properties

• Exponentials grow faster than any polynomial:

$$\lim_{n\to\infty} \frac{\mathrm{e}^n}{n^\alpha} = \infty$$

for every $\alpha > 0$ (huh? Isn't it true for every α ?)

Logarithms – Interesting Properties

• Exponentials grow faster than any polynomial:

$$\lim_{n\to\infty} \frac{\mathrm{e}^n}{n^\alpha} = \infty$$

for every $\alpha > 0$

• Thus, logarithms grow slower than any polynomial:

$$\lim_{n\to\infty} \frac{\ln n}{n^{\alpha}} = 0$$

Logarithms – Interesting Properties

 If we start with a value N, divide it by 2, then that result we divide it by 2, and so on, until reaching 1 or less — Question: how many times did we divide before reaching 1 or less?

Logarithms – Interesting Properties

- If we start with a value N, divide it by 2, then that result we divide it by 2, and so on, until reaching 1 or less — Question: How many times did we divide before reaching 1 or less?
- Follow-up question: How is this related to the idea of binary search?

Logarithms – Interesting Properties

 Given a value N, we write it as a decimal number (i.e. A sequence of 0 to 9 digits representing the value). Question: How many digits does it take to represent N?

Logarithms – Interesting Properties

- Given a value N, we write it as a decimal number (i.e. A sequence of 0 to 9 digits representing the value). Question: How many digits does it take to represent N?
- Follow-up question: How many bits does it take to represent N? (as in, if we write the binary representation of N)

Logarithms – Interesting Properties

- Given a value N, we write it as a decimal number (i.e. A sequence of 0 to 9 digits representing the value). Question: How many digits does it take to represent N?
- Follow-up question: How many bits does it take to represent N? (as in, if we write the binary representation of N)
- Careful: the *exact* answer is non-trivial...

Arithmetic Sums

• We will be particularly interested in the following sum:

• We will be particularly interested in the following sum:

ERSITY OF

ATERLOO

Anyone remembers? Anyone ventures to obtain a solution? (yourselves, not Googling it!)

• How about this variation?

UNIVERSITY OF

VATERLOO

$$\sum_{k=0}^{n} k^2$$

• How about this variation?

ERSITY OF

TERLOO

$$\sum_{k=0}^{n} k^2$$

Here's a thought: Do you think there should be any relationship between that sum and the following integral?

$$\int_{0}^{n} x^{2} dx$$

Geometric Sums

UNIVERSITY OF

ATERLOO

• We will also be interested in the following sum:

$$\sum_{k=0}^{n} a^{k}$$

Geometric Sums

ERSITY OF

ATERLOO

• We will also be interested in the following sum:

$$\sum_{k=0}^{n} a^{k}$$

Again — anyone remembers? Anyone ventures to obtain a solution?

Recurrence Relations

Recurrence Relations

 A recurrence relation is a means of defining a sequence by specifying the value of an element as a function of previous values of the sequence (as opposed to providing an explicit, closed-form expression for it).

Recurrence Relations

- A recurrence relation is a means of defining a sequence by specifying the value of an element as a function of previous values of the sequence (as opposed to providing an explicit, closed-form expression for it).
- Solving a recurrence relation consists of finding a closed-form expression for the sequence (that is, given the recurrence relation)

Recurrence Relations

• Really simple example: the sequence $x_n = 2n$ could be as easily specified by stating that:

$$x_n = x_{n-1} + 2$$

Recurrence Relations

• Really simple example: the sequence $x_n = 2n$ could be as easily specified by stating that:

$$x_n = x_{n-1} + 2$$

Actually, are we sure about that?

Recurrence Relations

• Really simple example: the sequence $x_n = 2n$ could be as easily specified by stating that:

$$x_n = x_{n-1} + 2$$

Actually, are we sure about that?

• Another thought: anyone sees a similarity between the above and the following?

$$\frac{dy}{dx} = 2$$

UNIVERSITY OF

Recurrence Relations

 These recurrence relations show up very often when analyzing algorithms' performance; and we will prefer a notation that highlights the aspect of a function of the variable n, as opposed to a sequence. Thus, the previous example, for us in ECE-250, would be written as:

$$f(n) = f(n-1) + 2 \implies f(n) = 2n$$

UNIVERSITY OF

Recurrence Relations

 These recurrence relations show up very often when analyzing algorithms' performance; and we will prefer a notation that highlights the aspect of a function of the variable n, as opposed to a sequence. Thus, the previous example, for us in ECE-250, would be written as:

$$f(n) = f(n-1) + 2 \implies f(n) = 2n$$

(remember that this is still wrong — why?)

Recurrence Relations

 For the same reason (that these show up very often when analyzing algorithms), we'll typically deal with (and be interested in) things involving powers, logarithms, exponentials, and combinations of these.

Recurrence Relations

- For the same reason (that these show up very often when analyzing algorithms), we'll typically deal with (and be interested in) things involving powers, logarithms, exponentials, and combinations of these.
- For example, if you remember previous slides, you should easily solve this one:

$$f(n) = f(n/2) + 1$$
, with $f(1) = 0$

Recurrence Relations

- For the same reason (that these show up very often when analyzing algorithms), we'll typically deal with (and be interested in) things involving powers, logarithms, exponentials, and combinations of these.
- For example, if you remember previous slides, you should easily solve this one:

$$f(n) = f(n/2) + 1$$
, with $f(1) = 0$

Permutations and Binomials

• You certainly remember factorials (right?)

 $n! = n \times (n-1) \times (n-2) \cdots 3 \times 2 \times 1$

- Do you happen to remember what it means? (i.e., a physical or geometric or in some way practical interpretation of its meaning?)
- We'll look at this more in detail in class (additional details in the post-lecture slides)

ERSITY

ERLOO

 Binomial coefficients, the so-called "n choose k" and denoted

 $\binom{n}{k}$

are closely related to factorials and permutations; we'll discuss and try to see this relationship in class (again, more details in the post-lecture slide set)

ERSITY

ERLOO

 Binomial coefficients, the so-called "n choose k" and denoted

 $\binom{n}{k}$

are closely related to factorials and permutations; we'll discuss and try to see this relationship in class (again, more details in the post-lecture slide set)

UNIVERSITY OF

ATERLOO

 An important application is the *Binomial* Expansion — to obtain the nth power of (x+y):

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$