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Proofs and Mathematical Induction

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Proofs and Mathematical Induction

● Today's class:
● Discuss the importance of proofs for us, engineers
● Introduce some basic notions — but...
● We'll mainly focus on mathematical induction

– Including a (rather neat) example of incorrect use of the 
technique!

● (Next class, we'll look at some other typical 
techniques and tricks)



  

Proofs and Mathematical Induction

● Mathematical proof:
● Rough / informal definition:

An argument, typically based on logic/deductive 
steps, that shows, in a verifiable and non-disputable 
way, that a given statement is true.

● Typically, proofs rely on some “background rules” to 
be true  (usually called “axioms”).
– For example, algebraic manipulations and basic 

properties of functions, etc., may be simply used as part 
of a proof, since they are assumed to be true — we don't 
need to extend our argument to cover those as well.



  

Proofs and Mathematical Induction

● Mathematical proof:
● It is essential that a proof uses deductive 

arguments rather than inductive or intuition-based 
arguments:
– The proof must show that the statement holds under all 

possible conditions/scenarios, rather than showing a (no 
matter how large) number of cases that confirm it.

– For example, to prove that  |a+b| ≤ |a| + |b|, it's not 
enough to show a number of examples of values for a 
and b where the inequality holds.



  

Proofs and Mathematical Induction

● Mathematical proof:
● Bottom line — our arguments have to be carefully 

chosen and we have to be very strict about what 
they say and what we conclude about them.



  

Proofs and Mathematical Induction

● Mathematical proof:
● Bottom line — our arguments have to be carefully 

chosen and we have to be very strict about what 
they say and what we conclude about them.

● As an example/analogy of how proofs should work 
(including how shouldn't they work!), I'm going to 
prove to you that my son, last year when he was 
1.75 years old, recognized and loved Chopin's 
music.



  

Proofs and Mathematical Induction

● Mathematical proof:
● Bottom line — our arguments have to be carefully 

chosen and we have to be very strict about what 
they say and what we conclude about them.

● As an example/analogy of how proofs should work 
(including how shouldn't they work!), I'm going to 
prove to you that my son, last year when he was 
1.75 years old, recognized and loved Chopin's 
music.

● The proof is a video that, well, I claim proves it !



  

Proofs and Mathematical Induction

● Mathematical proof:
● Bottom line — our arguments have to be carefully 

chosen and we have to be very strict about what 
they say and what we conclude about them.

● As the video shows, it may be very easy for our 
minds to inadvertently jump to inductive reasoning 
(instead of the required deductive reasoning) and 
draw general conclusions/statements from 
particular cases.

● Also, maybe keep this silly example in mind when 
writing test cases/protocols for boolean functions!!



  

Proofs and Mathematical Induction

● Why are proofs important for us?
● If you happen to end up doing research, or even as 

early as Grad school, you will need a reasonable 
level of skills at proving things — remember that 
you would be creating new knowledge!  Because it 
is new, you have to convince your audience that it is 
correct!

● But also while practicing engineering, coming up 
with a proof may be a way to convince yourselves 
(or your boss!) that some trick you just came up 
with works!



  

Proofs and Mathematical Induction

● Why are proofs important for us?
● Additionally, proofs (at least the “good” ones) may 

be quite insightful — often enough, they tell you a 
lot about the statement being proven  (such as why 
it is true, or why exactly it works the way it works)



  

Proofs and Mathematical Induction

● Many “standard” techniques for proofs.
● We'll see some of the basic ones next class
● Today, we'll focus on Proofs by Induction.



  

Mathematical Induction

● This technique is applicable to “discrete” cases; 
typically, statements involving either an integer 
number, or a group of objects  (the number of 
objects is restricted to be an integer).

● Statements to be proven may be a formula for 
n, purported to hold for every value of n > 0, or 
it could be a statement about a property of a set 
of values, etc.



  

Mathematical Induction

● It could be an algorithm, or some statement 
about a data structure!!  (the “statement” to be 
proven about the algorithm typically being its 
correctness, or the fact that it requires whatever 
number of operations to complete, etc.)



  

Mathematical Induction

● It could be an algorithm, or some statement 
about a data structure!!  (the “statement” to be 
proven about the algorithm typically being its 
correctness, or the fact that it requires whatever 
number of operations to complete, etc.)

● Why is mathematical induction applicable here? 
● An algorithm is discrete by nature, in that it runs in 

an integer number of steps.
● Data structures are discrete by nature.



  

Mathematical Induction

● How it works:
● We want to prove a statement about n, or which is 

stated for a number of things, or for something with 
integer size, that we denote n.

● The statement is supposed to be valid for n ≥ n0, for 
some n0  (for things with a size, or with a number of 
elements, it is somewhat implicit that n0 = 1)

● We proceed in two steps:
– Base case
– Induction step



  

Mathematical Induction

● How it works:
● Base case:

We start by showing that the statement is true for 
n = n0  (this is not hard as a general proof, since it is 
a particular case).

● Induction step:
We show that if the statement holds for n = k, then 
the statement holds for n = k+1 as well.  Notice that 
it is an implication that we're trying to show;  thus, 
we start by assuming (this is called the induction 
hypothesis) that the statement holds for n = k



  

Mathematical Induction

● How it works:
● Errm.... huh?  Isn't k supposed to be an arbitrary 

value?  So, we're assuming that the statement 
(what we need to prove, remember!) is true....  How 
is this not a logical fallacy of assuming the result??



  

Mathematical Induction

● How it works:
● Errm.... huh?  Isn't k supposed to be an arbitrary 

value?  So, we're assuming that the statement 
(what we need to prove, remember!) is true....  How 
is this not a logical fallacy of assuming the result??

● The important detail to keep in mind is that we need 
to prove an implication!  (that statement true for n=k 
implies that it is true for n=k+1 as well).  To prove 
an implication, we need to assume the antecedent.



  

Mathematical Induction

● How it works:
● So, the trick:  we're showing that it is true for the 

lowest possible value (say that it is n = 1).  And 
we're also showing that the fact that it is true for 
n = k implies that it is also true for n = k+1.  These 
two things together imply that the statement is true 
for all values of n.

● True for n=1       True for n=2.   But now, true for 
n=2       true for n=3, and so on, for every value of 
n ≥ 1.

⇒
⇒



  

Mathematical Induction

● An example:
● Last class, we saw, without much supporting 

evidence, the sum of squares.  Let's prove that one 
by induction:

(for all n ≥ 1) 

∑
k=1

n

k 2
=
n(n+1)(2n+1)

6



  

Mathematical Induction

● An example:
● Step 1:  Base case — we show that the statement 

holds for n = 1

∑
k=1

1

k 2
= 12

= 1 =
1(1+1)(2×1+1)

6



  

Mathematical Induction

● An example:
● Step 2:  Induction step — we show that if the 

statement holds for n, then it also holds for n+1  
(notice that we don't really need to call it k and k+1;  
n is as much an arbitrary name as k is — we are, in 
a sense, disconnected from the original statement, 
so n in here does not correspond to n in the original 
statement)



  

Mathematical Induction

● An example:
● Step 2:  Induction step — we show that if the 

statement holds for n, then it also holds for n+1

● To this end, we define our induction hypothesis, 
which is that the statement is true for n:

∑
k=1

n

k 2
=
n(n+1)(2n+1)

6



  

Mathematical Induction

● An example:
● Based on this induction hypothesis, we need to 

show that the statement holds for n+1;  that is:

∑
k=1

n+1

k 2
=

(n+1)(n+2)(2n+3)

6



  

Mathematical Induction

● An example:
● How do we proceed?  Two details:  we know that 

the sum up to n+1 is the sum up to n, plus (n+1)²  
(this is “axiomatically” true — plain old algebra).

● But we also know what the sum up to n is.... (right?)

● Let's do the derivation on the board first  (it's in the 
next few slides, so don't worry about taking notes):



  

Mathematical Induction

● An example:

∑
k=1

n+1

k 2
= ∑

k=1

n

k 2
+ (n+1)

2

=
n(n+1)(2n+1)

6
+ (n+1)

2

=
n(n+1)(2n+1) + 6(n+1)2

6



  

Mathematical Induction

● Working on the numerator, take common factor 
(n+1) to get:

n(n+1)(2n+1)+6(n+1)
2

= (n+1) (n(2n+1)+6(n+1) )
= (n+1)(2n2+7n+6)

= (n+1)(n+2)(2n+3)



  

Mathematical Induction

● Working on the numerator, take common factor 
(n+1) to get:

● Thus, we're obtaining:

n(n+1)(2n+1)+6(n+1)
2

= (n+1) (n(2n+1)+6(n+1) )
= (n+1)(2n2+7n+6)

= (n+1)(n+2)(2n+3)



  

Mathematical Induction

And this completes the induction step (showing 
that statement true for n implies that statement 
is true for n+1), completing the proof

∑
k=1

n+1

k 2
=

(n+1)(n+2)(2n+3)

6

=
(n+1)((n+1)+1)(2(n+1)+1)

6



  

Mathematical Induction

● In the previous example, we (sort of) started 
from the induction hypothesis and worked our 
way to the expression corresponding to the 
case n+1  (which is the one that we need to 
show to be true, based on the assumed 
induction hypothesis)

● We could have worked in the opposite 
direction;  in the next example we'll proceed 
that way.



  

Mathematical Induction

● Example 2:
Prove that 8n – 3n is divisible by 5 for all n ≥ 1.



  

Mathematical Induction

● Example 2:
Prove that 8n – 3n is divisible by 5 for all n ≥ 1.

● Step 1:  Base case:  n = 1,  8 – 3 = 5, which is 
of course divisible by 5.



  

Mathematical Induction

● Example 2:
Prove that 8n – 3n is divisible by 5 for all n ≥ 1.

● Step 1:  Base case:  n = 1,  8 – 3 = 5, which is 
of course divisible by 5.

● Induction step:  Based on the induction 
hypothesis that the statement holds for n, we 
want to show that it holds for n+1 as well.



  

Mathematical Induction

● Example 2:

● That is, we want to show that 8n+1 – 3n+1 is 
divisible by 5 provided that 8n – 3n is divisible 
by 5.

● We observe (somewhat trivial observation) that 
being divisible by 5 is the same as being a 
multiple of 5.

● We'll work on the fun part on the board first ... 



  

Mathematical Induction

● Example 2: 

8n+1
−3n+1

= 8⋅8n − 3⋅3n

= 8⋅8n − 8⋅3n + 5⋅3n

= 8(8n − 3n) + 5⋅3n



  

Mathematical Induction

● Example 2: 

● By induction hypothesis, 8n – 3n is divisible by 
5, or equivalently, is a multiple of 5;  say, 5·m 
for some m.

8n+1
−3n+1

= 8⋅8n − 3⋅3n

= 8⋅8n − 8⋅3n + 5⋅3n

= 8(8n − 3n) + 5⋅3n



  

Mathematical Induction

● Example 2:

Thus, 

● That is,                    is divisible by 5, completing 
the proof.

8n+1
−3n+1

= 5⋅m+ 5⋅3n = 5(m+3n)

8n+1
−3n+1



  

Mathematical Induction

● And again, 8n – 3n being divisible by 5 is what 
we want to prove, so how come we can just 
assume it, simply because we add the “by 
induction hypothesis” ??



  

Mathematical Induction

● And again, 8n – 3n being divisible by 5 is what 
we want to prove, so how come we can just 
assume it, simply because we add the “by 
induction hypothesis” ??

● Again, we're proving the implication  8n – 3n 
divisible by 5 implies that 8n+1 – 3n+1 is divisible 
by 5.  We need to assume it in the context of 
proving this implication, which is unrelated to 
the 8n – 3n  in the original statement.



  

Mathematical Induction

● There's an alternative form of Mathematical 
Induction, known as Strong or Complete 
Induction, in which the induction hypothesis is 
not simply the statement being true for n (or for 
n=k), but the statement being true for all values 
between n0 and n.  (n0 being the value for the 
base case).

● The next example illustrates this approach.



  

Mathematical Induction

● Example 3:
Prove that every integer number > 1 is either 
prime, or it is divisible by a prime number.



  

Mathematical Induction

● Example 3:
Prove that every integer number > 1 is either 
prime, or it is divisible by a prime number.

● Step 1:  Base case, in this case n = 2.  The 
statement trivially holds, since 2 is prime.



  

Mathematical Induction

● Example 3:
Prove that every integer number > 1 is either 
prime, or it is divisible by a prime number.

● Step 1:  Base case, in this case n = 2.  The 
statement trivially holds, since 2 is prime.

(errr, don't we need to verify the “or is divisible 
by a prime number?”)



  

Mathematical Induction

● Example 3:
Prove that every integer number > 1 is either 
prime, or it is divisible by a prime number.

● Step 1:  Base case, in this case n = 2.  The 
statement trivially holds, since 2 is prime.

(errr, don't we need to verify the “or is divisible 
by a prime number?” .... I'll leave it to you to 
think about why not)



  

Mathematical Induction

● Example 3:
Prove that every integer number > 1 is either 
prime, or it is divisible by a prime number.

● Step 2:  Induction step.  The induction 
hypothesis now is that every number between 2 
and n is either prime, or is divisible by a prime.

● We need to show that n+1 also is either prime 
or divisible by a prime.



  

Mathematical Induction

● Example 3:

Clearly, for n+1 there are only two possibilities:  
either it is prime, or it is not prime.  If it is prime, 
the statement holds.



  

Mathematical Induction

● Example 3:

Clearly, for n+1 there are only two possibilities:  
either it is prime, or it is not prime.  If it is prime, 
the statement holds.

If it is not prime, then by definition, it is divisible 
by some number (say, n1 ≠ 1).  If n+1 is divisble 

by n1, then n1 < n+1 — therefore, 2 ≤ n1 ≤ n



  

Mathematical Induction

● Example 3:

By induction hypothesis, if 2 ≤ n1 ≤ n, then n1 is 
either prime, or divisible by a prime (say, p1), 

and we're pretty much done:  If n1 is prime, then 

the statement holds  (n+1 is divisible by a 
prime).  If not.... then it is divisible by p1 times 
something — therefore, it is divisible by a prime 
(namely, by p1)



  

Mathematical Induction

● So, what could go wrong with Mathematical 
Induction ?

● You have to apply the technique carefully, as 
the next example shows by proving a (blatantly 
false) statement !!



  

Mathematical Induction

● Example 4:

Prove that in every group of n numbers, all 
numbers are equal to each other.



  

Mathematical Induction

● Example 4:

Prove that in every group of n numbers, all 
numbers are equal to each other.  (I'm not 
kidding!!  We're going to prove this!!!)



  

Mathematical Induction

● Example 4:

Prove that in every group of n numbers, all 
numbers are equal to each other.

● Step 1: Base case, n=1.  The statement is 
trivially true:  In a group with only one number, 
all numbers are equal.



  

Mathematical Induction

● Example 4:

Prove that in every group of n numbers, all 
numbers are equal to each other.

● Induction step:  Our induction hypothesis is that 
the statement holds for n;  that is, in every 
group of n numbers, all numbers are equal, and 
we want to show that this implies that in every 
group of n+1 numbers all numbers must also 
be equal.



  

Mathematical Induction

● Example 4:

The argument in the induction step will not be 
algebraic  (but then, no-one said that induction 
proofs are restricted to algebraic / arithmetic 
arguments).   Consider a group of n+1 values:

v1 v2 v3 v4 vn-1 vn vn+1



  

Mathematical Induction

● Example 4:

The argument in the induction step will not be 
algebraic  (but then, no-one said that induction 
proofs are restricted to algebraic / arithmetic 
arguments).   Consider a group of n+1 values.  
And consider the two “subsets” indicated below:

v1 v2 v3 v4 vn-1 vn vn+1

S1

S2



  

Mathematical Induction

● Example 4:

Since both S1 and S2 are groups of n numbers, 

by induction hypothesis, both consist of n times 
the same value.

v1 v2 v3 v4 vn-1 vn vn+1

S1

S2



  

Mathematical Induction

● Example 4:

That is, by induction hypothesis for S1, we 

obtain v1=v2= ··· =vn, and by induction 
hypothesis for S2, we obtain v2=v3= ··· =vn=vn+1.

By combining the two sets of equalities, we 
obtain v1=v2= ··· =vn=vn+1, completing the proof !! 

v1 v2 v3 v4 vn-1 vn vn+1

S1

S2



  

Mathematical Induction

● Example 4:

So... What went wrong?

You will understand that I will not accept the 
argument that this example shows that 
Mathematical Induction does not work... Right?



  

Mathematical Induction

● Example 4:

So... What went wrong?

Notice also that we're not talking about an 
unsubstantiated argument, assuming the result 
or something like that — the argument is 
actually quite clever — the “cleverness” being 
in the fact that the overlap in the two subsets is 
what allows the induction step to work!



  

Mathematical Induction

● Example 4:

So... I ask again, and hope you guys will be 
intrigued and love solving puzzles and will think 
about it:  What went wrong?

Please think about it, and try to figure out the 
flaw in this proof by yourself!

(maaaybe we'll discuss the solution next class)



  

Mathematical Induction

● Example 4:

BTW, when I say “the argument is quite clever”, I'm not 
bragging / being blatantly immodest — I clarify:  the argument is 
not mine.  In fact, it is much more clever than it appears — the 
real cleverness being on how an incorrect argument can look so 
much like a correct and clever one!

The puzzle was originally proposed by George Pólya, a 
Hungarian Mathematician.



  

Summary

● During today's lesson, we discussed:
● Basic notions about mathematical proofs
● Proofs by induction and examples
● An example of strong induction
● An example of a flawed proof by induction
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