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Mathematical Proofs

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Mathematical Proofs

● Today's class:
● We'll investigate a few additional techniques to 

prove statements, including:
– Direct proof
– Proof by construction
– Proof by enumeration (or exhaustion)
– Proving the contrapositive
– Proof by contradiction  (very useful in general)
– Proof by reduction  (very useful in the context of 

algorithms)



  

Mathematical Proofs

● Direct proof
● In general the simplest form to prove statements.  
● The result is directly obtained from the hypothesis 

(along with the basic axioms, etc.)
● Example:  proving that the square of an even 

number is even:

Proof:  An even number has the form 2k.  Its square 
is (2k)² = 4k² = 2(2k²), and so it is even.



  

Mathematical Proofs

● Proof by construction
● Usually applicable to statements about existence of 

some entity — by explicitly constructing an example 
of such entity, the statement is proven.



  

Mathematical Proofs

● Proof by enumeration (or exhaustion)
● The statement is proved by going over all possible 

conditions, and proving the statement for each one 
individually.  Obviously, this is feasible when there is 
a reasonable number of conditions.

● Example:  prove the triangle inequality for real 
numbers   (we won't really prove it — just sketch 
the procedure to illustrate the technique)



  

Mathematical Proofs

● Proof by enumeration (or exhaustion)

In this case, the relevant possibilities are a and b 
being negative or non-negative, with the 
combinations of each one's magnitude being the 
larger.

For example, if a is non-negative and b is negative, 
then we have:  |a| = a and |b| = –b, and 
|a+b| = a+b if |a|≥|b| or –(a+b) otherwise.  In the first 
case, the inequality leads to a+b ≤ a – b, or b ≤ –b, 
which is true since b is negative.  (etc. etc.)



  

Mathematical Proofs

● Proving the contrapositive
● The contrapositive of the statement  A      B, is the 

strictly equivalent statement Not B      Not A.
● Since the two forms are equivalent, proving one 

proves the other one.
● Example:  Prove that if n² is even, then n is even.

⇒
⇒



  

Mathematical Proofs

● Proving the contrapositive
● The contrapositive of the statement  A      B, is the 

strictly equivalent statement Not B      Not A.
● Since the two forms are equivalent, proving one 

proves the other one.
● Example:  Prove that if n² is even, then n is even.  

(Huh...  didn't we already prove this??  Doesn't the 
direct proof example prove this one as well??)

⇒
⇒



  

Mathematical Proofs

● Proving the contrapositive
● The contrapositive of the statement  A      B, is the 

strictly equivalent statement Not B      Not A.
● Since the two forms are equivalent, proving one 

proves the other one.
● Example:  Prove that if n² is even, then n is even.  

(Huh...  didn't we already prove this??  Doesn't the 
direct proof example prove this one as well??)

Careful!!  A      B is not the same as  B      A

⇒
⇒

⇒⇒



  

Mathematical Proofs

● Proving the contrapositive
● The contrapositive of this statement is:  if n is odd, 

then n² is odd  (if Not{n is even}, then Not{n² is 
even}), and this one is easy to show by a direct 
argument:

An odd number has the form 2k+1, and its square is 
(2k+1)² = (4k² + 4k + 1) = 2(2k² + 2k) + 1, and so is 
odd.



  

Proof by Contradiction

● There's this old (colloquial) adage that “you 
can't prove a negative”

● The rationale being more or less that proving 
something to be impossible or not to exist 
requires exhausting all possibilities in the 
Universe.  Any attempt to show that it's not 
possible might show instead that one is unable 
to, and not that it can not be done.



  

Proof by Contradiction

● However, that old adage could not be more 
wrong!

● Arguments by contradiction are a quite 
remarkable way around that rationale!



  

Proof by Contradiction

● To prove a statement by contradiction, you 
assume that the statement is false (or 
equivalently, assume the negation of the 
statement to be true), and show, using 
deductive steps and axiomatically true 
arguments, that such assumption leads to 
some inconsistency (contradiction).



  

Proof by Contradiction

● If every step is correct and you did everything 
right (which is an obvious condition for any 
proof to be correct), then the only item in 
question is the initial assumption, so it must be 
the one that is proven false.

● But the initial assumption is that what you want 
to prove is false, and you then proved that that 
is false — thus, what we wanted to prove is 
proved.



  

Proof by Contradiction

● One of the most remarkable examples (IMHO) 
is the proof that      is not a rational number.

● It would seem (if we follow that old adage's line 
of thought) impossible to prove....  No matter 
how many digits you show (showing that there 
is no periodicity), you still don't know if later on 
periodicity will appear...

● The argument is completely different ...  Let's 
assume that it is a rational number, and let p / q 
be the reduced form of that fraction. 

√2



  

Proof by Contradiction

● That is, p and q share no common factors, and 
it holds, of course, that 

( pq )
2

= 2 ⇒ p2=2 q2



  

Proof by Contradiction

● That is, p and q share no common factors, and 
it holds, of course, that

So, p² is even...  We already proved that this 
means that p is even;  say, p = 2k for some k.  
Then,  q² = p² / 2 = 4k² / 2 = 2k².

( pq )
2

= 2 ⇒ p2=2 q2



  

Proof by Contradiction

● So, q is also even — but this contradicts part of 
the initial assumption, that p and q share no 
common factors.

● Thus, our initial assumption that      is rational 
must be false.

√2



  

Proof by Contradiction

● Another reasonably neat example:
● Prove that there are infinitely many prime 

numbers



  

Proof by Contradiction

● Another reasonably neat example:
● Prove that there are infinitely many prime 

numbers  (and again, talk about a remarkably 
powerful argument — statements like these 
may sound like the perfect example for those 
that defend that old adage ....  How can you 
convincingly argue that there are infinitely many 
of something without showing them all?  How 
can you know that they won't stop after a 
certain value??)



  

Proof by Contradiction

● Philosophy aside, let's prove it!
● Assume there are finitely many primes:

And consider the value obtained as the product 
of all primes + 1:

p1 , p2 , p3 ,⋯ , pn−1 , pn

d = 1+ p1 p2 p3 ⋯ pn−1 pn



  

Proof by Contradiction

● The value d is larger than the largest prime 
(since it is the largest prime times all the other 
primes + 1), so it can not be prime.

● But, as we proved last class, this means that d 
must be divisible by a prime — say, pk (one of 
the n primes that exist).  It could be divisible by 
more than one prime, but we only consider one 
(which anyway is all we proved last time!)

● So, d = pk · m, for some m.



  

Proof by Contradiction

● Then, we have:

● But this means that pk divides 1, which is not 
possible, since pk > 1.

● Thus, our initial assumption (that there are 
finitely many primes) must be false.

d = pk m = 1+ p1 p2 p3 ⋯ pk ⋯ pn−1 pn

⇒ pk (m− p1 p2 p3 ⋯ pk−1 pk+1 ⋯ pn−1 pn) = 1



  

Proof by Contradiction

● A perhaps interesting observation:
● This proof can be seen as an example of a proof by 

construction — if you think about it, what happens 
is that the number d is prime;  so, we can rephrase 
the argument as:  we're showing that given the first 
n primes (no matter how large n), we're explicitly 
constructing a prime number that is larger than the 
largest of the first n primes, and that shows that 
there are infinitely many of them.



  

Proof by Contradiction

● In both examples so far, the argument leads to 
a contradiction of some of the “background” 
assumptions — something that we know to be 
axiomatically true is contradicted by our 
assumption that the given statement is false, 
leading to the conclusion that the given 
statement then must be true.



  

Proof by Contradiction

● In both examples so far, the argument leads to 
a contradiction of some of the “background” 
assumptions — something that we know to be 
axiomatically true is contradicted by our 
assumption that the given statement is false, 
leading to the conclusion that the given 
statement then must be true.

● In some cases, we might end up contradicting 
the assumption itself, like in the next example.



  

Proof by Contradiction

● BTW, in some cases, we might end up 
contradicting the hypothesis.

● In these cases, we're essentially proving the 
contrapositive — if A, then B;  let's assume that 
A holds, and assume for a contradiction that B 
is false;  then, we prove that that implies that A 
is false, but that contradicts the assumption that 
A holds.

● Offten enough, the argument by contradiction 
looks “better articulated”.



  

Proof by Contradiction

● Example:  (multi-processor parallel processing)

You have some processing totalling time T, and 
it can be split, in a continuous and arbitrary 
way, into N chunks, to be executed in parallel in 
N processors.

Prove that the optimal execution time is 
reached when the task is split into N equal-size 
subtasks.



  

Proof by Contradiction

● This example illustrates an additional 
interesting aspect that sometimes makes the 
technique applicable:  when we have to prove 
some condition about one particular 
combination among many, if we negate the 
condition, it may be easy to focus on one 
aspect of the negated condition that covers all 
other combinations.  Trying to prove the 
“positive” form of the statement may end up 
being quite challenging by comparison! 



  

Proof by Contradiction

● Anyway.... the proof:
● Assume, for a contradiction, that the the optimal 

time TO is reached for a splitting into N subtasks 
that are not all equally-sized.

● If they're not equally sized, then we can pick the 
task of largest size (let's call it TMAX) and the 
task of smallest size (let's call it TMIN)

● Notice that in this case, TO = TMAX  (the task is 
not complete until the subtask for TMAX is done)



  

Proof by Contradiction

● Given these conditions, we can find a different 
splitting with lower execution time:

● Since TMAX > TMIN (they can't be equal, since by 
assumption, we're splitting into tasks that are 
not equally-sized), then we can rearrange these 
two tasks so that each one takes (TMAX + TMIN) / 2

● But then, the TO that we obtain (let's call it T'O is 
lower than TMAX (the new max will be either the 
second highest T, or (TMAX + TMIN) / 2)



  

Proof by Contradiction

● Summarizing:  T'O < TO , but this contradicts the 
assumption that the splitting that we had was 
optimal  (since we're showing another one that 
gives a better execution time)

● Thus, the assumption must be incorrect, and 
the optimal splitting must be the one with N 
equally-sized tasks.



  

Proof by Contradiction

● The (easy to fix) flaw in the argument is that 
there may not be a single max, or a single min, 
for that matter!

● I will leave it to you to fix the argument to 
account for this detail!



  

Proof by Reduction



  

Proof by Reduction

● In the context of algorithms, reduction refers to 
implementing one algorithm in terms of another 
one.

● If we implement algorithm A in terms of 
algorithm B, we say that A reduces to B.

● This has obvious theoretical applications, but 
also practical ones — maybe an algorithm is 
readily available, and it may be easier to reduce 
to that one rather than implementing from 
scratch some new algorithm that we require.



  

Proof by Reduction

● It may be helpful for proofs about execution 
time of some algorithms.

● For example, if algorithm A is known to be 
“hard” or “slow” and we can find a reduction 
from A to B, then that proves that B can not be 
easy  (in any case, it can not be easier/faster 
than A).

● Right?   If B was easy, then A would also be 
easy, contradicting the known fact (or in any 
case the assumption) that A is hard



  

Proof by Reduction

● There's actually a subtlety in here, that ruins 
that argument (as stated)...   We'll come back to 
this detail ... 



  

Proof by Reduction

● There's actually a subtlety in here, that ruins 
that argument (as stated)...   We'll come back to 
this detail ...

● Subtlety aside, let's see one rather neat 
example  (the subtlety I'm referring to is really 
one extra condition that needs to be added, and 
that extra condition doesn't ruin the applicability 
of the technique):



  

Proof by Reduction

● Prove that an algorithm to find the convex hull 
of n points in the plane can not run in a worst-
case better than an amount proportional to 
n log(n).



  

Proof by Reduction

● Preliminary definitions:
● Convex hull of a set of points:  the smallest (in 

area) convex region that includes all the points.
● It is a known fact that for a set of points, the 

convex hull is always a convex polygon — the 
following example illustrates this:



  

Proof by Reduction

Consider the following set of points:



  

Proof by Reduction

Their convex hull:



  

Proof by Reduction

● Preliminary definitions:
● An important detail is that an algorithm to 

compute the convex hull must output the 
vertices of the polygon in sequence.  If not, we 
don't really have the convex hull — we would 
have a set of points that requires extra work to 
determine what the convex hull really is.



  

Proof by Reduction

● Another preliminary:

It is a proven fact that (under certain conditions, 
operating on a single processor computer with 
standard assumptions on memory, assembler 
instruction set, etc.) that no sort algorithm can 
sort a set of n arbitrary values in a worst-case 
time better than an amount of time proportional 
to n log(n)



  

Proof by Reduction

● We're now ready to prove the statement.
● As you already suspect, we're going to reduce 

sorting to computing a convex hull.
● That is, we're going to find a way to sort a set of 

values given an algorithm that computes a 
convex hull.

● This will clearly require to somehow construct 
points from the given values  (not a big 
challenge, really...)



  

Proof by Reduction

● The real challenge is finding a way to construct 
points in a way that the convex hull will output 
something that we know will be useful for the 
purpose of sorting  (and thus, useful for the 
purpose of our argument / proof)

● Hint:  What is the convex hull of a bunch of 
points that lie on the parabola given by y = x² ? 



  

Proof by Reduction

● Let's try and answer that question with an 
example:



  

Proof by Reduction

● Let's try and answer that question with an 
example:



  

Proof by Reduction

● Let's try and answer that question with an 
example:



  

Proof by Reduction

● Key detail being:  the convex hull always 
contains every point  (the parabola is convex!)



  

Proof by Reduction

● The other key detail being what we already 
said:  any convex hull algorithm would have to 
output those points in sequence.

● In this case, such output sequence involves the 
points in order by their x-coordinate  (right?)
 



  

● The other key detail being what we already 
said:  any convex hull algorithm would have to 
output those points in sequence.

● In this case, such output sequence involves the 
points in order by their x-coordinate  (right?)

● That probably means that the input values (the 
ones that need to be sorted) should be the x
coordinates of the points that we're going to 
feed as input to the convex hull algorithm.... 
 

Proof by Reduction



  

Proof by Reduction

● But the useful aspect was that the points should 
be on the parabola y = x²

● So, the reduction is:
● Given the values {x1, x2, x3, · · · , xn }, compute the 

set of points { (x1,x1²), (x2,x2²), (x3,x3²), · · · , (xn,xn²) } 
and feed those points to the convex-hull algorithm.



  

Proof by Reduction

● But the useful aspect was that the points should 
be on the parabola y = x²

● So, the reduction is:
● Given the values {x1, x2, x3, · · · , xn }, compute the 

set of points { (x1,x1²), (x2,x2²), (x3,x3²), · · · , (xn,xn²) } 
and feed those points to the convex-hull algorithm.

● Take the output from the convex-hull algorithm, 
extract and output the x-coordinates of each point



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}

x1=−3



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}

x2=5



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}

x3=2



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}

x 4=4



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}

x5=−2



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}

x6=1



  

Proof by Reduction

● Example:   Input values:  {-3, 5, 2, 4,-2,1}
● Input to Convex-Hull algorithm: {(-3,9), (5,25), 

(2,4), (4,16), (-2,4), (1,1)}



  

Proof by Reduction

● A key detail is that the reduction must be 
efficient;  in this example, the reduction must be 
faster than n log(n).

● Otherwise, we would be proving nothing — we 
know sort can't be faster than n log(n).  But if 
we do this trick, and the reduction requires an 
amount of time proportional to n², then because 
of the reduction part, we're not doing faster 
than n log(n).  But we already knew that, so our 
argument would prove absolutely nothing!



  

Summary

● During today's lesson, we discussed:
● Some additional aspects of Mathematical proofs
● Some of the basic techniques, with emphasis on:

– Proofs by Contradiction
– Proofs by Reduction

● We also introduced the notion of algorithmic 
reduction (more on this later on the course)
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