

Asymptotic Analysis

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Asymptotic Analysis

● Today's class:
● Introduce and justify the notion of Asymptotic

Analysis.
● Introduce Asymptotic notation (Landau symbols).
● Look at some of the common functions in the

analysis of algorithms.
● Next class, we'll look at an alternative criterion;

namely, using limits as n → ∞

Asymptotic Analysis

● Main goal:
● Mathematically describe the behaviour of

algorithms.
● By “behaviour” we often refer to:

– How long does it take to execute (the “run time”)
– How much memory does it require

Asymptotic Analysis

● Main goal:
● Mathematically describe the behaviour of

algorithms.
● By “behaviour” we often refer to:

– How long does it take to execute (the “run time”)
– How much memory does it require

● Typically, this description is given as a function of
the algorithm's input size.

Asymptotic Analysis

● An important detail to consider:
● We need to specify what we mean by the size of

the input.
● Typically, this will be related (directly or indirectly) to

the number of elements that the algorithm operates
on.
– The number of elements in an array or linked list (e.g.,

for an algorithm that finds the highest value in a list)
– The size (dimensions) of a square (n × n) matrix.
– The length of a given fragment of text.
– etc.

Asymptotic Analysis

● An important detail to consider:
● We need to specify what we mean by the size of

the input.
● In some cases (probably not too often in this

course), it might be the size in bits of the input value
to the algorithm (in this case, if the input value is x,
the size of the input is lg x bits)

Asymptotic Analysis

● Problem:
● How can we hope to determine the time it takes for

an algorithm to run, if the algorithm (or rather, an
implementation of it) can be run on different
computers, with different clock speeds, different
instruction sets, different memory access speeds,
etc.? (not to mention different implementations)

Asymptotic Analysis

● Problem:
● How can we hope to determine the time it takes for

an algorithm to run, if the algorithm (or rather, an
implementation of it) can be run on different
computers, with different clock speeds, different
instruction sets, different memory access speeds,
etc.? (not to mention different implementations)

● This seems to suggest that instead of measuring
actual time, we should measure something like
number of operations that it takes to execute.

Asymptotic Analysis

● Problem:
● But then, if we measure number of operations, we

still have a problem — different implementations of
an algorithm (perhaps implementations in different
programming languages?) still translate into
different actual number of CPU instructions.

Asymptotic Analysis

● Problem:
● But then, if we measure number of operations, we

still have a problem — different implementations of
an algorithm (perhaps implementations in different
programming languages?) still translate into
different actual number of CPU instructions.

● Maybe not too bad — we're talking differences
given by a scaling constant (C++ may be on
average 2.5 times faster than Java, and maybe
twice as slow as assembler code)

Asymptotic Analysis

● Bottom line:
● This suggests that maybe we shouldn't care about

proportionality constants when analyzing
algorithms.

Asymptotic Analysis

● Bottom line:
● This suggests that maybe we shouldn't care about

proportionality constants when analyzing
algorithms.

● In fact, a difference by a factor of 2 may easily be
compensated for by purchasing a machine that is
twice as fast!

Asymptotic Analysis

● Bottom line:
● This suggests that maybe we shouldn't care about

proportionality constants when analyzing
algorithms.

● In fact, a difference by a factor of 2 may easily be
compensated for by purchasing a machine that is
twice as fast!

● This may sound absurd, since, well, if we have the
machine twice as fast, we run the faster algorithm
on that machine anyway! But consider the
following:

Asymptotic Analysis

● Bottom line:
● We have an algorithm that has been already

implemented and tested, and it's ready to be used.
● We have an alternative — an algorithm that runs

twice as fast. However, we have to develop it,
incurring costs for:
– Implementation / Integration
– Testing
– Documentation

Asymptotic Analysis

● Bottom line:
● We have an algorithm that has been already

implemented and tested, and it's ready to be used.
● We have an alternative — an algorithm that runs

twice as fast. However, we have to develop it,
incurring costs for:
– Implementation / Integration
– Testing
– Documentation

● We may be talking $10k or $20k in salaries!!

Asymptotic Analysis

● Bottom line:
● With that amount of money, we can definitely

purchase a machine that is twice as fast!!

Asymptotic Analysis

● BTW … Is this “we buy a machine twice as fast”
argument valid if we're comparing “linear”
search vs. binary search?

Asymptotic Analysis

● BTW … Is this “we buy a machine twice as fast”
argument valid if we're comparing “linear”
search vs. binary search?

Linear search takes, in the worst-case, c1·n (for
some constant c1 > 0) operations to find a value
in a list of n elements. Binary search takes
c2 log n (for some constant c2 > 0).

Asymptotic Analysis

● BTW … Is this “we buy a machine twice as fast”
argument valid if we're comparing “linear”
search vs. binary search?

Linear search takes, in the worst-case, c1·n (for
some constant c1 > 0) operations to find a value
in a list of n elements. Binary search takes
c2 log n (for some constant c2 > 0).

Is it enough to purchase a faster computer?

Asymptotic Analysis

● Ok, so we established that we should not care
for proportionality constants (“scale factors”)

● But what about in functions such as
polynomials where we have several terms,
some more “important” than others?
(e.g., f(n) = n³ + 2n² + 10n + 7)

● In the above example, should we care about
the low-order terms, 2n², 10n, and 7 ?

Asymptotic Analysis

● Notice that those terms make a noticeable
difference (relative difference, that is) only for
low(-ish) values of n. For large values of n, the
polynomial's behaviour is essentially defined by
the leading (dominating) term — in this
example, n³.

Asymptotic Analysis

● Notice that those terms make a noticeable
difference (relative difference, that is) only for
low(-ish) values of n. For large values of n, the
polynomial's behaviour is essentially defined by
the leading (dominating) term — in this
example, n³.

● Ok, but if n is low, then the execution time will
be fast anyway (in any case, the “faster
computer” argument would apply), so why
would we care about the low-order terms?

Asymptotic Analysis

● Bottom line:
● We try to define behaviour of algorithms focusing

on the important part — pattern or rate of growth of
the function; disregarding (1) low-order terms and
(2) scale factors / proportionality constants.

Asymptotic Analysis

● Bottom line:
● We try to define behaviour of algorithms focusing

on the important part — pattern or rate of growth of
the function; disregarding (1) low-order terms and
(2) scale factors / proportionality constants.

● Thus, we define the asymptotic behaviour of the
function, which is directly relevant to the issue of
scalability of the algorithm? How does execution
time grow as the size of the input grows — say,
when it doubles?

Asymptotic Analysis

● Couple of examples:

Asymptotic Analysis

● Quadratic growth:
● Consider the two functions f(n) = n2 and

g(n) = n2 – 3n + 2 around n = 0.

Asymptotic Analysis

● Quadratic growth:
● If we look ahead, say, to n = 10, they start to look

more similar:

Asymptotic Analysis

● Quadratic growth:
● By n = 1000, they are almost indistinguishable:

Asymptotic Analysis

● Polynomial growth:
● Consider, first around n = 0, f(n) = n6 and

g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n:

Asymptotic Analysis

● Polynomial growth:
● Even around n = 10 they don't look too similar:

Asymptotic Analysis

● Polynomial growth:
● But sooner or later (showing to n = 1000), the term

n6 definitely wins/dominates:

● Asymptotic notation is based on Landau
symbols.

● We'll start with the three arguably most
important: O (big-Oh), Θ (big-Theta), and Ω
(big-Omega)

● Formally, each of these symbols, applied to a
given function f(n), defines a set that includes
all the functions related to f(n) in a particular
way (each symbol defines such particular way):

Asymptotic Analysis

● Θ (big-Theta) is defined as follows:

Asymptotic Analysis

Θ(g (n)) = { f (n) ∣ ∃ c1>0, c2>0, N>0 such that
0 ⩽ c1 g (n) ⩽ f (n) ⩽ c2 g (n) ∀ n⩾ N }

● It may be visualized as follows:

Asymptotic Analysis

 N

● This corresponds with the notion of a function
being “asymptotically proportional” to another,
in that two scaled versions of g(n) provide a
tight bound (upper- and lower-bound) for f(n) for
sufficiently large values of n

● That is, it goes with our notion of focusing on
what's important, disregarding proportionality
constants and lower-order terms (why? One
answer for each of the two aspects being
disregarded)

Asymptotic Analysis

● An example:
● Let's show that

Asymptotic Analysis

f (n) = 5n2+2n ∈ Θ(n2)

● An example:
● Let's show that

● In this case, g(n) is n², so we have to show that
there exist (i.e. by finding) constants c1 > 0, c2 > 0,
and N > 0 such that:

Asymptotic Analysis

f (n) = 5n2+2n ∈ Θ(n2)

0 ⩽ c1n
2
⩽ 5n2

+2n⩽ c2n
2

● An example:
● The first (left-most) inequality is trivial (it usually is,

since we'll be mostly interested in functions that
represent running-time of algorithms — so they
have to be strictly positive functions)

● The challenge is, then, finding c1 > 0, c2 > 0, and
N > 0 such that the other two inequalities are met
(one at a time; then, pick the higher N, so that both
are met):

Asymptotic Analysis

● An example:
● First inequality challenges us to find c1 > 0 and

N > 0 such that:

● And this one is rather trivial — any value of c1 with
0 < c1 < 5 satisfies the above for all n > 0 (i.e., c1 = 5
and N = 0 satisfy the condition)

Asymptotic Analysis

c1n
2
⩽ 5n2

+2n

● An example:
● Second inequality challenges us to find c2 > 0 and

N > 0 such that:

● This one is a little less obvious (still easy — it just
requires a bit of manipulation/algebra). Maybe start
by eliminating the common (positive!) factor n:

Asymptotic Analysis

5n2
+2n⩽ c2n

2

5n+2 ⩽ c2n ⇒ (c2−5)n⩾ 2

● An example:
● The smallest value of n for which that inequality can

be satisfied is clearly 1 (for n = 0, no matter how
large we choose c2, the expression on the left is 0,
so the inequality can not be satisfied).

● And for n ≥ 1, we have:

● So, c1 = 5, c2 = 7, and N = 1 satisfy the definition,
showing that 5n² + 2n Θ(n²)

Asymptotic Analysis

(c2−5)n ⩾ 2 ⇒ c2 ⩾ 7

∈

● A comment on notation:
● Though Θ(g(n)) is defined as a set and thus we

should say that a function f(n) is or is not in that set
(like the example 5n² + 2n Θ(n²), we normally
use a different notation.

Asymptotic Analysis

∈

● A comment on notation:
● Though Θ(g(n)) is defined as a set and thus we

should say that a function f(n) is or is not in that set
(like the example 5n² + 2n Θ(n²), we normally
use a different notation.

● Since what we're doing is really describing the
function f(n), we want to read that as f(n) is Θ(n²),
and thus, the standard notation uses the equal sign,
instead of the set inclusion sign. In the example
above, we would say that 5n² + 2n = Θ(n²)

Asymptotic Analysis

∈

● O (big-Oh) is defined as follows:

Asymptotic Analysis

O (g (n)) = { f (n) ∣ ∃ c>0, N>0 such that
0 ⩽ f (n) ⩽ c g (n) ∀ n⩾ N }

● It may be visualized as follows:

Asymptotic Analysis

 N

● This one corresponds with the notion of a
function being “asymptotically bounded” (upper-
bounded) by another.

Asymptotic Analysis

● This one corresponds with the notion of a
function being “asymptotically bounded” (upper-
bounded) by another.

● An important detail is that it covers cases of
functions where f(n) and g(n) are asymptotically
proportional as well as cases where f(n) is
asymptotically negligible with respect to g(n).

Asymptotic Analysis

● This one corresponds with the notion of a
function being “asymptotically bounded” (upper-
bounded) by another.

● An important detail is that it covers cases of
functions where f(n) and g(n) are asymptotically
proportional as well as cases where f(n) is
asymptotically negligible with respect to g(n).

● So, in particular, this tells us that:

Asymptotic Analysis

f (n) = Θ(g(n)) ⇒ f (n) = O (g(n))

● Right? Can we see the following from the
definitions?

Asymptotic Analysis

f (n) = Θ(g(n)) ⇒ f (n) = O (g(n))

● Right? Can we see the following from the
definitions?

● Sure !! The inequality in the big-Oh definition is
one of the inequalities in the big-Theta
definition — so, we choose c = c2 from the big-
Theta definition and with that we satisfy the
condition for big-Oh.

Asymptotic Analysis

f (n) = Θ(g(n)) ⇒ f (n) = O (g(n))

● Ω (big-Omega) is defined as follows:

Asymptotic Analysis

Ω(g (n)) = { f (n) ∣ ∃ c>0, N>0 such that
0 ⩽ c g (n) ⩽ f (n) ∀ n⩾ N }

● It may be visualized as follows:

Asymptotic Analysis

 N

● And this one has the interpretation of an
asymptotic lower-bound.

● Again, this includes cases of asymptotically
proportional functions as well as cases where
any scaled version of g(n) is asymptotically
negligible with respect to f(n).

● So, like in the big-Oh case, we have that:

Asymptotic Analysis

f (n) = Θ(g (n)) ⇒ f (n) = Ω(g(n))

● And speaking of big-Omega as an asymptotic
lower-bound — someone remembers when did
we encounter this notion during the previous
lectures?

Asymptotic Analysis

● And speaking of big-Omega as an asymptotic
lower-bound — someone remembers when did
we encounter this notion during the previous
lectures?

● Recall that we mentioned the known fact that
no sort algorithm can sort a group of n values in
less than an amount proportional to n log n (in
the worst-case)

Asymptotic Analysis

● Some common functions encountered in the
analysis of algorithms — we give them names:

Asymptotic Analysis

● Some common functions encountered in the
analysis of algorithms — we give them names:

Asymptotic Analysis

Θ(1) Constant (e.g., constant time)

Θ(log n) Logarithmic

Θ(n) Linear

Θ(n log n) «en log en»

Θ(na), 1<a<2 Sub-quadratic

Θ(n²) Quadratic

Θ(na) in general Polynomial

Θ(an) (a > 1) Exponential

● Perhaps a subtle/tricky detail — notice that
there is no single class for exponentials:

(why? why is it not the same for logarithms?)

Asymptotic Analysis

an ≠ Θ(bn) if a≠ b

● During today's class, we discussed:
● Rationale and justification for asymptotic analysis
● Landau symbols, in particular, big-Theta, big-Oh,

and big-Omega
● Some of the common functions we encounter as

part of the analysis of actual algorithms.

Summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

