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Asymptotic Analysis

● Today's class:
● Introduce and justify the notion of Asymptotic 

Analysis.
● Introduce Asymptotic notation  (Landau symbols).
● Look at some of the common functions in the 

analysis of algorithms.
● Next class, we'll look at an alternative criterion;  

namely, using limits as n → ∞



  

Asymptotic Analysis

● Main goal:
● Mathematically describe the behaviour of 

algorithms.
● By “behaviour” we often refer to:

– How long does it take to execute (the “run time”)
– How much memory does it require



  

Asymptotic Analysis

● Main goal:
● Mathematically describe the behaviour of 

algorithms.
● By “behaviour” we often refer to:

– How long does it take to execute (the “run time”)
– How much memory does it require

● Typically, this description is given as a function of 
the algorithm's input size.



  

Asymptotic Analysis

● An important detail to consider:
● We need to specify what we mean by the size of 

the input.
● Typically, this will be related (directly or indirectly) to 

the number of elements that the algorithm operates 
on.
– The number of elements in an array or linked list  (e.g., 

for an algorithm that finds the highest value in a list)
– The size (dimensions) of a square (n × n) matrix.
– The length of a given fragment of text.
– etc.



  

Asymptotic Analysis

● An important detail to consider:
● We need to specify what we mean by the size of 

the input.
● In some cases (probably not too often in this 

course), it might be the size in bits of the input value 
to the algorithm  (in this case, if the input value is x, 
the size of the input is lg x bits)



  

Asymptotic Analysis

● Problem:
● How can we hope to determine the time it takes for 

an algorithm to run, if the algorithm (or rather, an 
implementation of it) can be run on different 
computers, with different clock speeds, different 
instruction sets, different memory access speeds, 
etc.?  (not to mention different implementations)



  

Asymptotic Analysis

● Problem:
● How can we hope to determine the time it takes for 

an algorithm to run, if the algorithm (or rather, an 
implementation of it) can be run on different 
computers, with different clock speeds, different 
instruction sets, different memory access speeds, 
etc.?  (not to mention different implementations)

● This seems to suggest that instead of measuring 
actual time, we should measure something like 
number of operations that it takes to execute.



  

Asymptotic Analysis

● Problem:
● But then, if we measure number of operations, we 

still have a problem — different implementations of 
an algorithm (perhaps implementations in different 
programming languages?) still translate into 
different actual number of CPU instructions.



  

Asymptotic Analysis

● Problem:
● But then, if we measure number of operations, we 

still have a problem — different implementations of 
an algorithm (perhaps implementations in different 
programming languages?) still translate into 
different actual number of CPU instructions.

● Maybe not too bad — we're talking differences 
given by a scaling constant  (C++ may be on 
average 2.5 times faster than Java, and maybe 
twice as slow as assembler code)



  

Asymptotic Analysis

● Bottom line:
● This suggests that maybe we shouldn't care about 

proportionality constants when analyzing 
algorithms.



  

Asymptotic Analysis

● Bottom line:
● This suggests that maybe we shouldn't care about 

proportionality constants when analyzing 
algorithms.

● In fact, a difference by a factor of 2 may easily be 
compensated for by purchasing a machine that is 
twice as fast!



  

Asymptotic Analysis

● Bottom line:
● This suggests that maybe we shouldn't care about 

proportionality constants when analyzing 
algorithms.

● In fact, a difference by a factor of 2 may easily be 
compensated for by purchasing a machine that is 
twice as fast!

● This may sound absurd, since, well, if we have the 
machine twice as fast, we run the faster algorithm 
on that machine anyway!  But consider the 
following:



  

Asymptotic Analysis

● Bottom line:
● We have an algorithm that has been already 

implemented and tested, and it's ready to be used.
● We have an alternative — an algorithm that runs 

twice as fast.  However, we have to develop it, 
incurring costs for:
– Implementation / Integration
– Testing
– Documentation



  

Asymptotic Analysis

● Bottom line:
● We have an algorithm that has been already 

implemented and tested, and it's ready to be used.
● We have an alternative — an algorithm that runs 

twice as fast.  However, we have to develop it, 
incurring costs for:
– Implementation / Integration
– Testing
– Documentation

● We may be talking $10k or $20k in salaries!!



  

Asymptotic Analysis

● Bottom line:
● With that amount of money, we can definitely 

purchase a machine that is twice as fast!!



  

Asymptotic Analysis

● BTW … Is this “we buy a machine twice as fast” 
argument valid if we're comparing “linear” 
search vs. binary search?



  

Asymptotic Analysis

● BTW … Is this “we buy a machine twice as fast” 
argument valid if we're comparing “linear” 
search vs. binary search?

Linear search takes, in the worst-case, c1·n (for 
some constant c1 > 0) operations to find a value 
in a list of n elements.  Binary search takes 
c2 log n (for some constant c2 > 0).



  

Asymptotic Analysis

● BTW … Is this “we buy a machine twice as fast” 
argument valid if we're comparing “linear” 
search vs. binary search?

Linear search takes, in the worst-case, c1·n (for 
some constant c1 > 0) operations to find a value 
in a list of n elements.  Binary search takes 
c2 log n (for some constant c2 > 0).

Is it enough to purchase a faster computer?



  

Asymptotic Analysis

● Ok, so we established that we should not care 
for proportionality constants  (“scale factors”)

● But what about in functions such as 
polynomials where we have several terms, 
some more “important” than others?
(e.g., f(n) = n³ + 2n² + 10n + 7)

● In the above example, should we care about 
the low-order terms, 2n², 10n, and  7 ?



  

Asymptotic Analysis

● Notice that those terms make a noticeable 
difference (relative difference, that is) only for 
low(-ish) values of n.  For large values of n, the 
polynomial's behaviour is essentially defined by 
the leading (dominating) term — in this 
example, n³.



  

Asymptotic Analysis

● Notice that those terms make a noticeable 
difference (relative difference, that is) only for 
low(-ish) values of n.  For large values of n, the 
polynomial's behaviour is essentially defined by 
the leading (dominating) term — in this 
example, n³.

● Ok, but if n is low, then the execution time will 
be fast anyway (in any case, the “faster 
computer” argument would apply), so why 
would we care about the low-order terms?



  

Asymptotic Analysis

● Bottom line:
● We try to define behaviour of algorithms focusing 

on the important part — pattern or rate of growth of 
the function;  disregarding (1) low-order terms and 
(2) scale factors / proportionality constants.



  

Asymptotic Analysis

● Bottom line:
● We try to define behaviour of algorithms focusing 

on the important part — pattern or rate of growth of 
the function;  disregarding (1) low-order terms and 
(2) scale factors / proportionality constants.

● Thus, we define the asymptotic behaviour of the 
function, which is directly relevant to the issue of 
scalability of the algorithm?  How does execution 
time grow as the size of the input grows — say, 
when it doubles?



  

Asymptotic Analysis

● Couple of examples:



  

Asymptotic Analysis

● Quadratic growth:
● Consider the two functions  f(n) = n2  and  

g(n) = n2 – 3n + 2  around n = 0.



  

Asymptotic Analysis

● Quadratic growth:
● If we look ahead, say, to n = 10, they start to look 

more similar:



  

Asymptotic Analysis

● Quadratic growth:
● By n = 1000, they are almost indistinguishable:



  

Asymptotic Analysis

● Polynomial growth:
● Consider, first around n = 0,  f(n) = n6  and 

g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n:



  

Asymptotic Analysis

● Polynomial growth:
● Even around n = 10 they don't look too similar:



  

Asymptotic Analysis

● Polynomial growth:
● But sooner or later (showing to n = 1000), the term 

n6 definitely wins/dominates:



  

● Asymptotic notation is based on Landau 
symbols.

● We'll start with the three arguably most 
important: O (big-Oh), Θ (big-Theta), and Ω 
(big-Omega)

● Formally, each of these symbols, applied to a 
given function f(n), defines a set that includes 
all the functions related to f(n) in a particular 
way (each symbol defines such particular way):

Asymptotic Analysis



  

● Θ (big-Theta) is defined as follows:

Asymptotic Analysis

Θ(g (n)) = { f (n) ∣ ∃ c1>0, c2>0, N>0 such that
0 ⩽ c1 g (n) ⩽ f (n) ⩽ c2 g (n) ∀ n⩾ N }



  

● It may be visualized as follows:

Asymptotic Analysis

 N 



  

● This corresponds with the notion of a function 
being “asymptotically proportional” to another, 
in that two scaled versions of g(n) provide a 
tight bound (upper- and lower-bound) for f(n) for 
sufficiently large values of n 

● That is, it goes with our notion of focusing on 
what's important, disregarding proportionality 
constants and lower-order terms  (why?  One 
answer for each of the two aspects being 
disregarded)

Asymptotic Analysis



  

● An example:
● Let's show that  

Asymptotic Analysis

f (n) = 5n2+2n ∈ Θ(n2)



  

● An example:
● Let's show that  

● In this case, g(n) is n², so we have to show that 
there exist (i.e. by finding) constants c1 > 0, c2 > 0, 
and N > 0 such that:

Asymptotic Analysis

f (n) = 5n2+2n ∈ Θ(n2)

0 ⩽ c1n
2
⩽ 5n2

+2n⩽ c2n
2



  

● An example:
● The first (left-most) inequality is trivial  (it usually is, 

since we'll be mostly interested in functions that 
represent running-time of algorithms — so they 
have to be strictly positive functions)

● The challenge is, then, finding c1 > 0, c2 > 0, and 
N > 0 such that the other two inequalities are met 
(one at a time; then, pick the higher N, so that both 
are met):

Asymptotic Analysis



  

● An example:
● First inequality challenges us to find c1 > 0 and 

N > 0 such that:

● And this one is rather trivial — any value of c1 with 
0 < c1 < 5 satisfies the above for all n > 0 (i.e., c1 = 5 
and N = 0 satisfy the condition)

Asymptotic Analysis

c1n
2
⩽ 5n2

+2n



  

● An example:
● Second inequality challenges us to find c2 > 0 and 

N > 0 such that:

● This one is a little less obvious  (still easy — it just 
requires a bit of manipulation/algebra).  Maybe start 
by eliminating the common (positive!) factor n:

Asymptotic Analysis

5n2
+2n⩽ c2n

2

5n+2 ⩽ c2n ⇒ (c2−5)n⩾ 2



  

● An example:
● The smallest value of n for which that inequality can 

be satisfied is clearly 1  (for n = 0, no matter how 
large we choose c2, the expression on the left is 0, 
so the inequality can not be satisfied).

● And for n ≥ 1, we have:

● So, c1 = 5, c2 = 7, and N = 1 satisfy the definition, 
showing that 5n² + 2n      Θ(n²)

Asymptotic Analysis

(c2−5)n ⩾ 2 ⇒ c2 ⩾ 7

∈



  

● A comment on notation:
● Though Θ(g(n)) is defined as a set and thus we 

should say that a function f(n) is or is not in that set  
(like the example  5n² + 2n      Θ(n²), we normally 
use a different notation.

Asymptotic Analysis

∈



  

● A comment on notation:
● Though Θ(g(n)) is defined as a set and thus we 

should say that a function f(n) is or is not in that set  
(like the example  5n² + 2n      Θ(n²), we normally 
use a different notation.

● Since what we're doing is really describing the 
function f(n), we want to read that as f(n) is Θ(n²), 
and thus, the standard notation uses the equal sign, 
instead of the set inclusion sign.  In the example 
above, we would say that  5n² + 2n = Θ(n²)

Asymptotic Analysis

∈



  

● O (big-Oh) is defined as follows:

Asymptotic Analysis

O (g (n)) = { f (n) ∣ ∃ c>0, N>0 such that
0 ⩽ f (n) ⩽ c g (n) ∀ n⩾ N }



  

● It may be visualized as follows:

Asymptotic Analysis

 N 



  

● This one corresponds with the notion of a 
function being “asymptotically bounded” (upper-
bounded) by another.

Asymptotic Analysis



  

● This one corresponds with the notion of a 
function being “asymptotically bounded” (upper-
bounded) by another.

● An important detail is that it covers cases of 
functions where f(n) and g(n) are asymptotically 
proportional as well as cases where f(n) is 
asymptotically negligible with respect to g(n).

Asymptotic Analysis



  

● This one corresponds with the notion of a 
function being “asymptotically bounded” (upper-
bounded) by another.

● An important detail is that it covers cases of 
functions where f(n) and g(n) are asymptotically 
proportional as well as cases where f(n) is 
asymptotically negligible with respect to g(n).

● So, in particular, this tells us that:

Asymptotic Analysis

f (n) = Θ(g(n)) ⇒ f (n) = O (g(n))



  

● Right?  Can we see the following from the 
definitions?

Asymptotic Analysis

f (n) = Θ(g(n)) ⇒ f (n) = O (g(n))



  

● Right?  Can we see the following from the 
definitions?

● Sure !!  The inequality in the big-Oh definition is 
one of the inequalities in the big-Theta 
definition — so, we choose c = c2 from the big-
Theta definition and with that we satisfy the 
condition for big-Oh.

Asymptotic Analysis

f (n) = Θ(g(n)) ⇒ f (n) = O (g(n))



  

● Ω (big-Omega) is defined as follows:

Asymptotic Analysis

Ω(g (n)) = { f (n) ∣ ∃ c>0, N>0 such that
0 ⩽ c g (n) ⩽ f (n) ∀ n⩾ N }



  

● It may be visualized as follows:

Asymptotic Analysis

 N 



  

● And this one has the interpretation of an 
asymptotic lower-bound.

● Again, this includes cases of asymptotically 
proportional functions as well as cases where 
any scaled version of g(n) is asymptotically 
negligible with respect to f(n).

● So, like in the big-Oh case, we have that:

Asymptotic Analysis

f (n) = Θ(g (n)) ⇒ f (n) = Ω(g(n))



  

● And speaking of big-Omega as an asymptotic 
lower-bound — someone remembers when did 
we encounter this notion during the previous 
lectures?

Asymptotic Analysis



  

● And speaking of big-Omega as an asymptotic 
lower-bound — someone remembers when did 
we encounter this notion during the previous 
lectures?

● Recall that we mentioned the known fact that 
no sort algorithm can sort a group of n values in 
less than an amount proportional to n log n (in 
the worst-case)

Asymptotic Analysis



  

● Some common functions encountered in the 
analysis of algorithms — we give them names:

Asymptotic Analysis



  

● Some common functions encountered in the 
analysis of algorithms — we give them names:

Asymptotic Analysis

Θ(1) Constant (e.g., constant time)

Θ(log n) Logarithmic

Θ(n) Linear

Θ(n log n) «en log en»

Θ(na),  1<a<2 Sub-quadratic

Θ(n²) Quadratic

Θ(na)  in general Polynomial

Θ(an)  (a > 1) Exponential



  

● Perhaps a subtle/tricky detail — notice that 
there is no single class for exponentials:

(why?  why is it not the same for logarithms?)

Asymptotic Analysis

an ≠ Θ(bn) if a≠ b



  

● During today's class, we discussed:
● Rationale and justification for asymptotic analysis
● Landau symbols, in particular, big-Theta, big-Oh, 

and big-Omega
● Some of the common functions we encounter as 

part of the analysis of actual algorithms.

Summary
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