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Announcements

● We have class this Wednesday, Jan 18 at 
12:30
● That is, we have two sessions this Wednesday:  at 

12:30 in the make-up time slot, and at 4:30 in the 
regular class time slot.



  

Asymptotic Analysis

● Today's class:
● We'll continue with Asymptotic analysis.
● We'll see some additional examples for the 

common functions we saw last time.
● Investigate an alternative technique, using limits to 

determine the appropriate Landau symbol that 
relates two given functions.

● We'll also introduce two additional Landau symbols 
(perhaps not as useful as the three we saw, but 
worth knowing about)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● We mentioned one example, for Θ(1) — a.k.a. 

constant (e.g., constant time) — being subscripted 
access of an element of an array;  regardless the 
number of elements n in an array, accessing an 
element by subscript takes a constant amount of 
time (it maps to a single assembly-level instruction 
on most CPUs)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● Perhaps a less obvious example for Θ(1) — an 

operation that may involve (perhaps at random), 1, 
2, or 3 operations.

● Why is this Θ(1) ?



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● Perhaps a less obvious example for Θ(1) — an 

operation that may involve (perhaps at random), 1, 
2, or 3 operations.

● Why is this Θ(1) ?
● Perhaps more strange is calling it constant time, 

when it is not constant at all.



  

Asymptotic Analysis

● For the “why is Θ(1)” part — should be clear;  it 
can be upper- and lower-bounded by constants 
(1 and 3, for example)



  

Asymptotic Analysis

● For the “why is Θ(1)” part — should be clear;  it 
can be upper- and lower-bounded by constants 
(1 and 3, for example)

● As for why calling it constant time, when it is not 
constant?  Well, you can think of it in terms of a 
“deadline” by which you're sure the operation 
has completed — and this deadline is a fixed 
value, regardless the number of elements.



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● You guys give me one example for logarithmic time 

( Θ(log n) )



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● You guys give me one example for logarithmic time 

( Θ(log n) )

● Binary search on an array of n elements.
● Hmmm....  array only?  Not a linked list ??



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● How about linear time, or Θ(n) ?



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● How about linear time, or Θ(n) ?

● Regular search on an array of n elements.
● Computing the average of n values.

– However, computing the variance would be .... ?



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● How about linear time, or Θ(n) ?

● Regular search on an array of n elements.
● Computing the average of n values.

– However, computing the variance would be .... ?
● I would hope that it was not a big surprise that it is also Θ(n)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● We saw an example for n log n — it was, however, 

Ω(n log n), and not Θ(n log n)

● Remember that sort can not be done faster than 
n log n — which is equivalent to say that sorting is 
Ω(n log n).



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● We saw an example for n log n — it was, however, 

Ω(n log n), and not Θ(n log n)

● Remember that sort can not be done faster than 
n log n — which is equivalent to say that sorting is 
Ω(n log n).

● BTW — we will see several algorithms that achieve 
this bound; that is, that have run time Θ(n log n)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● Later in the course, we'll see an example of sub-

quadratic time.
● A preview — an algorithm that recursively splits the 

job for size n into three recursive calls for size n/2.
– Thus, if we do k recursive calls, that's 3k operations  (for 

each of the three recursive calls, there will be three 
other), but k will be lg n  (right?), so that's 3lg n — from Q1 
of the assignment, you recall that this is nlg 3 ≈ n1.585



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● An example for quadratic time, Θ(n²) ?

– How about this for a trick question:  can a sort algorithm 
be Θ(n²) ?



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● An example for quadratic time, Θ(n²) ?

– How about this for a trick question:  can a sort algorithm 
be Θ(n²) ?

– Sure — in fact, Θ(n²) ⊂ Ω(n log n);  we know that the run 
time of any sort algorithm must be in the set Ω(n log n);  if 
it is in the set Θ(n²), then it is also in Ω(n log n), which 
means that the possibility is valid.



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● Let's see a (very simple/intuitive) sorting algorithm 

that is Θ(n²):
● Find the lowest element in the array (that's linear 

time), then swap it with the first element;  then, find 
the lowest element in the n−1 elements starting at 
the second position, and swap it with the second 
element;  ... and so on.

● (for an animated demo, look up Selection Sort on 
Wikipedia — the animation with numbers 0 to 9)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● Let's see why it is Θ(n²)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● The searching part takes n operations the first time; 

then, n−1 operations, then n−2 .... all the way until 
just one operation.



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● The searching part takes n operations the first time; 

then, n−1 operations, then n−2 .... all the way until 
just one operation.

● For each of the first n−1 elements, you need to 
swap  (for the last one, we don't need to do 
anything), which is 1 operation ....  Well, ok, 3, but 
that's the same as 1 ... right?
– This “abuse” of arithmetic is justified by the fact that we're 

analyzing the algorithm, and 3 = Θ(1)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● Anyway, we don't really need to replace that 3 with 

1  (we could simply argue that swap takes a 
constant amount of time, so we may consider it one 
operation — but let's proceed with 3;  you probably 
already saw that it won't make any difference!)

● We have, n + (n−1) + (n−2) + · · · + 3 + 2 + 1 ... We 
recognize this .... (right?) ...  And we have 3(n−1) 
operations for the swap — that's n(n+1)/2 + 3(n−1), 
which is Θ(n²)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● How about another trick question (maybe the 

question won't be too hard for you to see the 
answer right away, but I estimate that the answer 
may be very surprising)



  

Asymptotic Analysis

● Examples of algorithms or operations exhibiting 
the common functions seen last time:
● How about another trick question (maybe the 

question won't be too hard for you to see the 
answer right away, but I estimate that the answer 
may be very surprising)

● What is the run time (in asymptotic notation) of 
selection sort when executed only in arrays of 10 
elements or less?  (we don't necessarily know how 
many, and it may vary between runs, but we know 
that it is always 10 or less elements)



  

Asymptotic Analysis

● And speaking of ....  Let's bring back the 
example of linear search.

● We said that searching for a value in an 
unordered group of values requires Θ(n) 
operations — what if the value is found at the 
first, or second location?

● In fact, on average we will not require n 
operations — on average, it will be found half-
way ...  Oh, wait!  That's still Θ(n) !!



  

Asymptotic Analysis

● Maybe we could suggest the idea that we want 
to describe linear search as O(n) instead of 
Θ(n) — big-Oh indicates upper-bound, instead 
of the tight bound that Θ describes.



  

Asymptotic Analysis

● Maybe we could suggest the idea that we want 
to describe linear search as O(n) instead of 
Θ(n) — big-Oh indicates upper-bound, instead 
of the tight bound that Θ describes.

● Side-note:  the C++ Standard (as in, the ISO 
document that defines C++) typically dictates 
run time requirements for operations or 
algorithms that are part of the Standard Library; 
those are almost always given in big-Oh 
notation  (why would this be a good thing?)



  

Asymptotic Analysis

● But where I'm really going with this is the notion 
of how exactly we describe the run time of a 
given algorithm, with three important options to 
consider:
● Worst-case analysis
● Average-case analysis
● Best-case analysis



  

Asymptotic Analysis

● Worst-case analysis:
Important when we need a guarantee about 
execution time.
● For example, in Embedded Systems (in particular 

real-time embedded systems), this often plays an 
important role — example:  if you're controlling a 
robot that is performing surgery, you have to 
calculate the movements, and once every, say, 
10 ms, you absolutely need to output data to the 
actuators.  You require the guarantee of execution 
time.



  

Asymptotic Analysis

● Average-case analysis:
Quite often important — for most non-critical 
systems (e.g., games, web applications, server-
side software, etc.);  you want an average that 
allows you to guarantee a certain level of 
“smoothness” in the operation for a given 
number of concurrent requests.



  

Asymptotic Analysis

● Best-case analysis:
Errmm....  Does anyone ever care about this 
one?  :-)



  

Asymptotic Analysis

● Best-case analysis:
Errmm....  Does anyone ever care about this 
one?  :-)

(yes, the implied sarcastic tone is because the 
answer is, «of course not!»   Maybe as an 
academic exercise it may be interesting, 
perhaps for the purpose of making sure that we 
understand the complete picture, etc.;  but it 
typically has no practical value)



  

Asymptotic Analysis

● In general, if we are restricted to one of these to 
describe a given algorithm, we use the worst-
case to describe it.

● Often enough, we use both worst-case and 
average-case.
● However, very often, in asymptotic notation, worst-

case and average-case are in the same class  
(example, linear search — both worst-case and 
average-case are Θ(n))



  

Asymptotic Analysis

● Examples of exponential run time:
● Algorithms where we need to check all possibilities 

(for a suitable definition of “need to” — there are 
many situations where no better approach has been 
found;  that does not mean that there aren't any)

● One of such cases is the “subset-sum” problem;  
given n values, is there a subset of those values 
that adds 0?
– An exponential time algorithm (Θ(2n)) consists of 

checking all combinations of each element being included 
or not  (why is this 2n ?)



  

Asymptotic Analysis

● Examples of exponential run time:
● Somewhat of a trick question:  wouldn't this be 

Θ(n 2n) ?  (checking the sum requires adding 
elements, and the number of elements goes up to 
n, and is indeed n / 2 on average, given that we take 
all combinations)



  

Asymptotic Analysis

● Examples of exponential run time:
● Somewhat of a trick question:  wouldn't this be 

Θ(n 2n) ?  (checking the sum requires adding 
elements, and the number of elements goes up to 
n, and is indeed n / 2 on average, given that we take 
all combinations)

● In fact, a naive implementation would indeed be 
Θ(n 2n).  But the sums can be computed 
incrementally  (when adding a new elements to the 
subset, don't recompute the sum — just add that 
value;  same when removing)



  

Asymptotic Analysis

● Examples of exponential run time:
● Interestingly enough, the best-case run time for this 

example is constant time for a YES answer and 
linear time for a NO answer  (do you see why?)



  

Asymptotic Analysis

● Examples of exponential run time:
● Interestingly enough, the best-case run time for this 

example is constant time for a YES answer and 
linear time for a NO answer  (do you see why?)

● If the first element is 0, then in just one operation 
the algorithm outputs YES;  if all values are 
positive, or all are negative (which requires looking 
at all values before knowing), then the algorithm 
outputs NO.



  

Asymptotic Analysis

● Let's look at an alternative technique to figure 
out the appropriate descriptions for given 
functions.

● For example, consider two asymptotically non-
negative functions f(n) and g(n), and consider:

● Say that the limit exists and is finite and 
non zero — what does that tell us?‑

lim
n→∞

f (n)
g (n)



  

Asymptotic Analysis

● Well, you remember the formal definition of that 
limit ...



  

Asymptotic Analysis

● Well, you remember the formal definition of that 
limit ... (right?)



  

Asymptotic Analysis

● Well, you remember the formal definition of that 
limit ... (right?)

lim
n→∞

f (n) = L if

∀ ϵ>0, ∃ N>0 ∣ ∣ f (n)−L∣< ϵ ∀ n>N



  

Asymptotic Analysis

● Well, you remember the formal definition of that 
limit ... (right?)

● Since we're saying that the limit of f(n) / g(n) 
exists (and is finite), we know that for all ε > 0, 
such N exists.

lim
n→∞

f (n) = L if

∀ ϵ>0, ∃ N>0 ∣ ∣ f (n)−L∣< ϵ ∀ n>N



  

Asymptotic Analysis

● That is:

 

● Since the above holds for every ε > 0, and L > 0 
(why is L > 0?), then it must hold for every ε 
with 0 < ε < L:

∀ ϵ>0, ∃ N>0 ∣ ∣ f (n)
g (n)

− L∣< ϵ ∀ n>N

∣ f (n)
g (n)

− L∣< ϵ ⇒ −ϵ <
f (n)
g (n)

− L < ϵ



  

Asymptotic Analysis

● Thus,

● Since g(n) is non-negative  (right?  why?):

● But L−ε > 0 (right?) ... So, what does this 
remind us of?  (Hint: choose c1 = L−ε and 
c2 = L+ε)

−ϵ <
f (n)
g (n)

− L < ϵ ⇒ L−ϵ <
f (n)
g (n)

< L+ϵ

(L−ϵ)g(n) < f (n) < (L+ϵ)g (n) ∀ n>N



  

Asymptotic Analysis

● Bottom line:
 

For every asymptotically non-negative functions 
f(n) and g(n), we have:

● Important:  this is a one-direction implication, 
and not an if-and-only-if — can you think of a 
counter-example (to show that the other 
direction does not necessarily hold)  ?

0 < lim
n→∞

f (n)
g(n)

< ∞ ⇒ f (n) = Θ(g (n))



  

Asymptotic Analysis

● There may be cases where the limit does not 
even exist, and yet one function is Θ the other 
function.
 

● Example:  2+sin(n) = Θ(1) — right?

● However, the limit of 2+sin(n) over 1 as n → ∞ 
does not exist.



  

Asymptotic Analysis

● Similar criteria can be found for the other two 
Landau symbols that we saw last class:

lim
n→∞

f (n)
g(n)

< ∞ ⇒ f (n) =O (g(n))



  

Asymptotic Analysis

● Similar criteria can be found for the other two 
Landau symbols that we saw last class:

● The difference to notice being that now the limit 
may be 0 — and sure, f(n) = O(g(n)) allows for 
f(n) to be either asymptotically proportional to 
g(n) or asymptotically negligible with respect to 
g(n) — in which case the limit would be 0.

lim
n→∞

f (n)
g(n)

< ∞ ⇒ f (n) =O (g(n))



  

Asymptotic Analysis

● Similarly, for Ω we have:

● The difference being that the limit may be ∞, 
corresponding to the situation where g(n) is 
asymptotically negligible with respect to f(n).

0 < lim
n→∞

f (n)
g(n)

⇒ f (n) = Ω(g(n))



  

Asymptotic Analysis

● We can repeat the example (which will this time 
seem trivial by comparison) from last class, 
showing that 5n² + 2n = Θ(n²):

● Directly showing that the numerator is Θ the 
denominator.

lim
n→∞

5n2+2 n

n2 = 5



  

Asymptotic Analysis

● Another example:  let's verify that selection sort 
is, as we know it must be, Ω(n log n):



  

Asymptotic Analysis

● Another example:  let's verify that selection sort 
is, as we know it must be, Ω(n log n):

lim
n→∞

n2

n log n
= lim

n→∞

n
log n



  

Asymptotic Analysis

● Another example:  let's verify that selection sort 
is, as we know it must be, Ω(n log n):

● We could claim that log grows slower than any 
power nd, for every d > 0, and thus the limit is ∞.

● But we might as well use L'Hôpital's rule ... 

lim
n→∞

n2

n log n
= lim

n→∞

n
log n



  

Asymptotic Analysis

● Another example:  let's verify that selection sort 
is, as we know it must be, Ω(n log n):

lim
n→∞

n
log n

= lim
n→∞

1
1 /n

= ∞



  

Asymptotic Analysis

● Another example:  let's verify that selection sort 
is, as we know it must be, Ω(n log n):

● Perhaps the only warning is that n is not 
supposed to be a continuous variable .... (is this 
really a problem?)

lim
n→∞

n
log n

= lim
n→∞

1
1 /n

= ∞



  

Asymptotic Analysis

● There are two additional Landau symbols that 
we'll want to know about  (though they're not as 
useful — in practical situations — for describing 
algorithms as the three that we have seen).

● These are little-oh (o), and little-omega (ω).
● You could visualize these as the part, or the 

subset, from their corresponding big 
counterparts that excludes the big-Theta.



  

Asymptotic Analysis

● For example, informally speaking, big-Oh 
means that the function is either proportional or 
negligible with respect to the other one.
● Little-oh means that the function is negligible with 

respect to the other one.

● In terms of limits, it means:

lim
n→∞

f (n)
g(n)

= 0 ⇒ f (n) = o(g (n))



  

Asymptotic Analysis

● In terms of the formal definition, it may seem 
tricky/subtle:

o(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ f (n) ⩽ c g(n) ∀ n⩾ N }



  

Asymptotic Analysis

● In terms of the formal definition, it may seem 
tricky/subtle:

● See the difference with respect to big-Oh's 
definition?

o(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ f (n) ⩽ c g(n) ∀ n⩾ N }



  

Asymptotic Analysis

● In terms of the formal definition, it may seem 
tricky/subtle:

● See the difference with respect to big-Oh's 
definition?  (Hint:  in the above, what if instead 
of c, we use ε to denote that value?)

o(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ f (n) ⩽ c g(n) ∀ n⩾ N }



  

Asymptotic Analysis

● Similar idea for little-omega — in terms of limits:

lim
n→∞

f (n)
g(n)

= ∞ ⇒ f (n) = ω(g(n))



  

Asymptotic Analysis

● Similar idea for little-omega — in terms of limits:

 
● In terms of formal definition:

lim
n→∞

f (n)
g(n)

= ∞ ⇒ f (n) = ω(g(n))

ω(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ c g(n) ⩽ f (n) ∀ n⩾ N }



  

Asymptotic Analysis

● Summarizing the definitions, in terms of the 
criteria using limits:

lim
n→∞

f (n)
g (n)

< ∞f (n) =O (g(n))

lim
n→∞

f (n)
g (n)

= 0f (n) = o(g(n))

0 < lim
n→∞

f (n)
g (n)

< ∞f (n) = Θ(g (n))

lim
n→∞

f (n)
g (n)

> 0f (n) = Ω(g(n))

lim
n→∞

f (n)
g (n)

= ∞f (n) = ω(g (n))



  

Asymptotic Analysis

● Finally, as an analogy, to remember the 
meanings of these symbols;  since they are 
used to compare functions with the idea of 
upper- and lower-bounds, we could definitely 
establish an analogy with comparing 
numbers --- upper-bound being associated with 
greater than, lower-bound associated with less 
than, and asymptotically proportional 
associated with being equal:



  

Asymptotic Analysis

● Thus, with our analogy, we would have:

f ⩽ gf (n) =O (g(n))

f < gf (n) = o(g(n))

f = gf (n) = Θ(g (n))

f ⩾ gf (n) = Ω(g(n))

f > gf (n) = ω(g (n))



  

Summary

● During today's class, we discussed:
● Several examples of algorithms with run times 

corresponding to common functions (by name)
● Saw an alternative criterion to determine the 

appropriate Landau symbol for given functions.
● Introduced two additional Landau symbols;  namely, 

little-oh (o) and little-omega (ω).
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