

Asymptotic Analysis – Cont'd

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Announcements

● We have class this Wednesday, Jan 18 at
12:30
● That is, we have two sessions this Wednesday: at

12:30 in the make-up time slot, and at 4:30 in the
regular class time slot.

Asymptotic Analysis

● Today's class:
● We'll continue with Asymptotic analysis.
● We'll see some additional examples for the

common functions we saw last time.
● Investigate an alternative technique, using limits to

determine the appropriate Landau symbol that
relates two given functions.

● We'll also introduce two additional Landau symbols
(perhaps not as useful as the three we saw, but
worth knowing about)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● We mentioned one example, for Θ(1) — a.k.a.

constant (e.g., constant time) — being subscripted
access of an element of an array; regardless the
number of elements n in an array, accessing an
element by subscript takes a constant amount of
time (it maps to a single assembly-level instruction
on most CPUs)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● Perhaps a less obvious example for Θ(1) — an

operation that may involve (perhaps at random), 1,
2, or 3 operations.

● Why is this Θ(1) ?

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● Perhaps a less obvious example for Θ(1) — an

operation that may involve (perhaps at random), 1,
2, or 3 operations.

● Why is this Θ(1) ?
● Perhaps more strange is calling it constant time,

when it is not constant at all.

Asymptotic Analysis

● For the “why is Θ(1)” part — should be clear; it
can be upper- and lower-bounded by constants
(1 and 3, for example)

Asymptotic Analysis

● For the “why is Θ(1)” part — should be clear; it
can be upper- and lower-bounded by constants
(1 and 3, for example)

● As for why calling it constant time, when it is not
constant? Well, you can think of it in terms of a
“deadline” by which you're sure the operation
has completed — and this deadline is a fixed
value, regardless the number of elements.

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● You guys give me one example for logarithmic time

(Θ(log n))

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● You guys give me one example for logarithmic time

(Θ(log n))

● Binary search on an array of n elements.
● Hmmm.... array only? Not a linked list ??

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● How about linear time, or Θ(n) ?

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● How about linear time, or Θ(n) ?

● Regular search on an array of n elements.
● Computing the average of n values.

– However, computing the variance would be ?

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● How about linear time, or Θ(n) ?

● Regular search on an array of n elements.
● Computing the average of n values.

– However, computing the variance would be ?
● I would hope that it was not a big surprise that it is also Θ(n)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● We saw an example for n log n — it was, however,

Ω(n log n), and not Θ(n log n)

● Remember that sort can not be done faster than
n log n — which is equivalent to say that sorting is
Ω(n log n).

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● We saw an example for n log n — it was, however,

Ω(n log n), and not Θ(n log n)

● Remember that sort can not be done faster than
n log n — which is equivalent to say that sorting is
Ω(n log n).

● BTW — we will see several algorithms that achieve
this bound; that is, that have run time Θ(n log n)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● Later in the course, we'll see an example of sub-

quadratic time.
● A preview — an algorithm that recursively splits the

job for size n into three recursive calls for size n/2.
– Thus, if we do k recursive calls, that's 3k operations (for

each of the three recursive calls, there will be three
other), but k will be lg n (right?), so that's 3lg n — from Q1
of the assignment, you recall that this is nlg 3 ≈ n1.585

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● An example for quadratic time, Θ(n²) ?

– How about this for a trick question: can a sort algorithm
be Θ(n²) ?

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● An example for quadratic time, Θ(n²) ?

– How about this for a trick question: can a sort algorithm
be Θ(n²) ?

– Sure — in fact, Θ(n²) ⊂ Ω(n log n); we know that the run
time of any sort algorithm must be in the set Ω(n log n); if
it is in the set Θ(n²), then it is also in Ω(n log n), which
means that the possibility is valid.

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● Let's see a (very simple/intuitive) sorting algorithm

that is Θ(n²):
● Find the lowest element in the array (that's linear

time), then swap it with the first element; then, find
the lowest element in the n−1 elements starting at
the second position, and swap it with the second
element; ... and so on.

● (for an animated demo, look up Selection Sort on
Wikipedia — the animation with numbers 0 to 9)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● Let's see why it is Θ(n²)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● The searching part takes n operations the first time;

then, n−1 operations, then n−2 all the way until
just one operation.

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● The searching part takes n operations the first time;

then, n−1 operations, then n−2 all the way until
just one operation.

● For each of the first n−1 elements, you need to
swap (for the last one, we don't need to do
anything), which is 1 operation Well, ok, 3, but
that's the same as 1 ... right?
– This “abuse” of arithmetic is justified by the fact that we're

analyzing the algorithm, and 3 = Θ(1)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● Anyway, we don't really need to replace that 3 with

1 (we could simply argue that swap takes a
constant amount of time, so we may consider it one
operation — but let's proceed with 3; you probably
already saw that it won't make any difference!)

● We have, n + (n−1) + (n−2) + · · · + 3 + 2 + 1 ... We
recognize this (right?) ... And we have 3(n−1)
operations for the swap — that's n(n+1)/2 + 3(n−1),
which is Θ(n²)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● How about another trick question (maybe the

question won't be too hard for you to see the
answer right away, but I estimate that the answer
may be very surprising)

Asymptotic Analysis

● Examples of algorithms or operations exhibiting
the common functions seen last time:
● How about another trick question (maybe the

question won't be too hard for you to see the
answer right away, but I estimate that the answer
may be very surprising)

● What is the run time (in asymptotic notation) of
selection sort when executed only in arrays of 10
elements or less? (we don't necessarily know how
many, and it may vary between runs, but we know
that it is always 10 or less elements)

Asymptotic Analysis

● And speaking of Let's bring back the
example of linear search.

● We said that searching for a value in an
unordered group of values requires Θ(n)
operations — what if the value is found at the
first, or second location?

● In fact, on average we will not require n
operations — on average, it will be found half-
way ... Oh, wait! That's still Θ(n) !!

Asymptotic Analysis

● Maybe we could suggest the idea that we want
to describe linear search as O(n) instead of
Θ(n) — big-Oh indicates upper-bound, instead
of the tight bound that Θ describes.

Asymptotic Analysis

● Maybe we could suggest the idea that we want
to describe linear search as O(n) instead of
Θ(n) — big-Oh indicates upper-bound, instead
of the tight bound that Θ describes.

● Side-note: the C++ Standard (as in, the ISO
document that defines C++) typically dictates
run time requirements for operations or
algorithms that are part of the Standard Library;
those are almost always given in big-Oh
notation (why would this be a good thing?)

Asymptotic Analysis

● But where I'm really going with this is the notion
of how exactly we describe the run time of a
given algorithm, with three important options to
consider:
● Worst-case analysis
● Average-case analysis
● Best-case analysis

Asymptotic Analysis

● Worst-case analysis:
Important when we need a guarantee about
execution time.
● For example, in Embedded Systems (in particular

real-time embedded systems), this often plays an
important role — example: if you're controlling a
robot that is performing surgery, you have to
calculate the movements, and once every, say,
10 ms, you absolutely need to output data to the
actuators. You require the guarantee of execution
time.

Asymptotic Analysis

● Average-case analysis:
Quite often important — for most non-critical
systems (e.g., games, web applications, server-
side software, etc.); you want an average that
allows you to guarantee a certain level of
“smoothness” in the operation for a given
number of concurrent requests.

Asymptotic Analysis

● Best-case analysis:
Errmm.... Does anyone ever care about this
one? :-)

Asymptotic Analysis

● Best-case analysis:
Errmm.... Does anyone ever care about this
one? :-)

(yes, the implied sarcastic tone is because the
answer is, «of course not!» Maybe as an
academic exercise it may be interesting,
perhaps for the purpose of making sure that we
understand the complete picture, etc.; but it
typically has no practical value)

Asymptotic Analysis

● In general, if we are restricted to one of these to
describe a given algorithm, we use the worst-
case to describe it.

● Often enough, we use both worst-case and
average-case.
● However, very often, in asymptotic notation, worst-

case and average-case are in the same class
(example, linear search — both worst-case and
average-case are Θ(n))

Asymptotic Analysis

● Examples of exponential run time:
● Algorithms where we need to check all possibilities

(for a suitable definition of “need to” — there are
many situations where no better approach has been
found; that does not mean that there aren't any)

● One of such cases is the “subset-sum” problem;
given n values, is there a subset of those values
that adds 0?
– An exponential time algorithm (Θ(2n)) consists of

checking all combinations of each element being included
or not (why is this 2n ?)

Asymptotic Analysis

● Examples of exponential run time:
● Somewhat of a trick question: wouldn't this be

Θ(n 2n) ? (checking the sum requires adding
elements, and the number of elements goes up to
n, and is indeed n / 2 on average, given that we take
all combinations)

Asymptotic Analysis

● Examples of exponential run time:
● Somewhat of a trick question: wouldn't this be

Θ(n 2n) ? (checking the sum requires adding
elements, and the number of elements goes up to
n, and is indeed n / 2 on average, given that we take
all combinations)

● In fact, a naive implementation would indeed be
Θ(n 2n). But the sums can be computed
incrementally (when adding a new elements to the
subset, don't recompute the sum — just add that
value; same when removing)

Asymptotic Analysis

● Examples of exponential run time:
● Interestingly enough, the best-case run time for this

example is constant time for a YES answer and
linear time for a NO answer (do you see why?)

Asymptotic Analysis

● Examples of exponential run time:
● Interestingly enough, the best-case run time for this

example is constant time for a YES answer and
linear time for a NO answer (do you see why?)

● If the first element is 0, then in just one operation
the algorithm outputs YES; if all values are
positive, or all are negative (which requires looking
at all values before knowing), then the algorithm
outputs NO.

Asymptotic Analysis

● Let's look at an alternative technique to figure
out the appropriate descriptions for given
functions.

● For example, consider two asymptotically non-
negative functions f(n) and g(n), and consider:

● Say that the limit exists and is finite and
non zero — what does that tell us?‑

lim
n→∞

f (n)
g (n)

Asymptotic Analysis

● Well, you remember the formal definition of that
limit ...

Asymptotic Analysis

● Well, you remember the formal definition of that
limit ... (right?)

Asymptotic Analysis

● Well, you remember the formal definition of that
limit ... (right?)

lim
n→∞

f (n) = L if

∀ ϵ>0, ∃ N>0 ∣ ∣ f (n)−L∣< ϵ ∀ n>N

Asymptotic Analysis

● Well, you remember the formal definition of that
limit ... (right?)

● Since we're saying that the limit of f(n) / g(n)
exists (and is finite), we know that for all ε > 0,
such N exists.

lim
n→∞

f (n) = L if

∀ ϵ>0, ∃ N>0 ∣ ∣ f (n)−L∣< ϵ ∀ n>N

Asymptotic Analysis

● That is:

● Since the above holds for every ε > 0, and L > 0
(why is L > 0?), then it must hold for every ε
with 0 < ε < L:

∀ ϵ>0, ∃ N>0 ∣ ∣ f (n)
g (n)

− L∣< ϵ ∀ n>N

∣ f (n)
g (n)

− L∣< ϵ ⇒ −ϵ <
f (n)
g (n)

− L < ϵ

Asymptotic Analysis

● Thus,

● Since g(n) is non-negative (right? why?):

● But L−ε > 0 (right?) ... So, what does this
remind us of? (Hint: choose c1 = L−ε and
c2 = L+ε)

−ϵ <
f (n)
g (n)

− L < ϵ ⇒ L−ϵ <
f (n)
g (n)

< L+ϵ

(L−ϵ)g(n) < f (n) < (L+ϵ)g (n) ∀ n>N

Asymptotic Analysis

● Bottom line:

For every asymptotically non-negative functions
f(n) and g(n), we have:

● Important: this is a one-direction implication,
and not an if-and-only-if — can you think of a
counter-example (to show that the other
direction does not necessarily hold) ?

0 < lim
n→∞

f (n)
g(n)

< ∞ ⇒ f (n) = Θ(g (n))

Asymptotic Analysis

● There may be cases where the limit does not
even exist, and yet one function is Θ the other
function.

● Example: 2+sin(n) = Θ(1) — right?

● However, the limit of 2+sin(n) over 1 as n → ∞
does not exist.

Asymptotic Analysis

● Similar criteria can be found for the other two
Landau symbols that we saw last class:

lim
n→∞

f (n)
g(n)

< ∞ ⇒ f (n) =O (g(n))

Asymptotic Analysis

● Similar criteria can be found for the other two
Landau symbols that we saw last class:

● The difference to notice being that now the limit
may be 0 — and sure, f(n) = O(g(n)) allows for
f(n) to be either asymptotically proportional to
g(n) or asymptotically negligible with respect to
g(n) — in which case the limit would be 0.

lim
n→∞

f (n)
g(n)

< ∞ ⇒ f (n) =O (g(n))

Asymptotic Analysis

● Similarly, for Ω we have:

● The difference being that the limit may be ∞,
corresponding to the situation where g(n) is
asymptotically negligible with respect to f(n).

0 < lim
n→∞

f (n)
g(n)

⇒ f (n) = Ω(g(n))

Asymptotic Analysis

● We can repeat the example (which will this time
seem trivial by comparison) from last class,
showing that 5n² + 2n = Θ(n²):

● Directly showing that the numerator is Θ the
denominator.

lim
n→∞

5n2+2 n

n2 = 5

Asymptotic Analysis

● Another example: let's verify that selection sort
is, as we know it must be, Ω(n log n):

Asymptotic Analysis

● Another example: let's verify that selection sort
is, as we know it must be, Ω(n log n):

lim
n→∞

n2

n log n
= lim

n→∞

n
log n

Asymptotic Analysis

● Another example: let's verify that selection sort
is, as we know it must be, Ω(n log n):

● We could claim that log grows slower than any
power nd, for every d > 0, and thus the limit is ∞.

● But we might as well use L'Hôpital's rule ...

lim
n→∞

n2

n log n
= lim

n→∞

n
log n

Asymptotic Analysis

● Another example: let's verify that selection sort
is, as we know it must be, Ω(n log n):

lim
n→∞

n
log n

= lim
n→∞

1
1 /n

= ∞

Asymptotic Analysis

● Another example: let's verify that selection sort
is, as we know it must be, Ω(n log n):

● Perhaps the only warning is that n is not
supposed to be a continuous variable (is this
really a problem?)

lim
n→∞

n
log n

= lim
n→∞

1
1 /n

= ∞

Asymptotic Analysis

● There are two additional Landau symbols that
we'll want to know about (though they're not as
useful — in practical situations — for describing
algorithms as the three that we have seen).

● These are little-oh (o), and little-omega (ω).
● You could visualize these as the part, or the

subset, from their corresponding big
counterparts that excludes the big-Theta.

Asymptotic Analysis

● For example, informally speaking, big-Oh
means that the function is either proportional or
negligible with respect to the other one.
● Little-oh means that the function is negligible with

respect to the other one.

● In terms of limits, it means:

lim
n→∞

f (n)
g(n)

= 0 ⇒ f (n) = o(g (n))

Asymptotic Analysis

● In terms of the formal definition, it may seem
tricky/subtle:

o(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ f (n) ⩽ c g(n) ∀ n⩾ N }

Asymptotic Analysis

● In terms of the formal definition, it may seem
tricky/subtle:

● See the difference with respect to big-Oh's
definition?

o(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ f (n) ⩽ c g(n) ∀ n⩾ N }

Asymptotic Analysis

● In terms of the formal definition, it may seem
tricky/subtle:

● See the difference with respect to big-Oh's
definition? (Hint: in the above, what if instead
of c, we use ε to denote that value?)

o(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ f (n) ⩽ c g(n) ∀ n⩾ N }

Asymptotic Analysis

● Similar idea for little-omega — in terms of limits:

lim
n→∞

f (n)
g(n)

= ∞ ⇒ f (n) = ω(g(n))

Asymptotic Analysis

● Similar idea for little-omega — in terms of limits:

● In terms of formal definition:

lim
n→∞

f (n)
g(n)

= ∞ ⇒ f (n) = ω(g(n))

ω(g (n)) = { f (n) ∣ ∀ c>0, ∃ N>0 such that
0 ⩽ c g(n) ⩽ f (n) ∀ n⩾ N }

Asymptotic Analysis

● Summarizing the definitions, in terms of the
criteria using limits:

lim
n→∞

f (n)
g (n)

< ∞f (n) =O (g(n))

lim
n→∞

f (n)
g (n)

= 0f (n) = o(g(n))

0 < lim
n→∞

f (n)
g (n)

< ∞f (n) = Θ(g (n))

lim
n→∞

f (n)
g (n)

> 0f (n) = Ω(g(n))

lim
n→∞

f (n)
g (n)

= ∞f (n) = ω(g (n))

Asymptotic Analysis

● Finally, as an analogy, to remember the
meanings of these symbols; since they are
used to compare functions with the idea of
upper- and lower-bounds, we could definitely
establish an analogy with comparing
numbers --- upper-bound being associated with
greater than, lower-bound associated with less
than, and asymptotically proportional
associated with being equal:

Asymptotic Analysis

● Thus, with our analogy, we would have:

f ⩽ gf (n) =O (g(n))

f < gf (n) = o(g(n))

f = gf (n) = Θ(g (n))

f ⩾ gf (n) = Ω(g(n))

f > gf (n) = ω(g (n))

Summary

● During today's class, we discussed:
● Several examples of algorithms with run times

corresponding to common functions (by name)
● Saw an alternative criterion to determine the

appropriate Landau symbol for given functions.
● Introduced two additional Landau symbols; namely,

little-oh (o) and little-omega (ω).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

