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Standard reminder to set phones to 
silent/vibrate mode, please!



  

Algorithm Analysis

● Previously, on ECE-250...
● We looked at:

– Asymptotic Analysis
– Asymptotic notation
– Tried to figure out run times (in asymptotic notation) for 

some simple algorithms from their description



  

Algorithm Analysis

● In today's class:
● We'll look in more detail at the analysis of 

algorithms.
● In particular, given an algorithm, analyze it to 

determine its run time and space requirements
– (In today's examples, we'll put some more emphasis on 

runtimes — when dealing with data structures and 
operations on them, we'll probably put the emphasis on 
space requirements)

● We'll look into some of the common constructs in 
C++  (should be useful for the general case)



  

Algorithm Analysis

● Analyzing algorithms typically involves:
● Counting instances of execution for the various 

sections:
– A program may be three or four lines, yet those could 

translate into several thousand operations  (e.g., loops)
– (BTW, what else, other than loops?)

● Figuring out the run time for each of the simpler 
parts.

● Compute totals and figure out the appropriate class 
(as in, which Landau symbol and what function)



  

Algorithm Analysis

● We already mentioned the issue of counting 
operations when the number of times 
something executes depends on the data (and 
thus, may vary from execution to execution)

● We also mentioned that if we're restricted to 
one figure to describe the algorithm, then we 
use the worst-case analysis.
● In some (perhaps most) cases, it is also a good 

idea to include average-case analysis as well.
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● We'll look at:
● Operators and expressions
● Control statements

– Conditional statements and loops
● Functions
● Recursive functions (if enough time) 
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● Operators, as a general rule, map to one or a 
few (as in, a fixed number of) assembly-level 
instructions.

● For example, the statement  a += b;  could 
map to something like:

    addl  %eax, -4(%rbp)
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● This automatically tells us that these operators' 
run time is Θ(1)

● This includes:
● Reading variables / assigning variables  (=)
● Arithmetic operations  (+, −, *, /, %, ++, --)
● Logical and bitwise operations  (and/or/not/xor)
● Comparisons  (==, !=, <, <=, >, >=)
● Subscripting  ( [ ] ) and dereferencing (*, ->)
● Memory allocation and deallocation (new, delete)
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● However, there may be exceptions:  with 
strings, comparison operators can take linear 
time (if measured with respect to the length of 
the string), and so does operator +  (for strings, 
this means concatenation).

● And for that matter, with operators used on 
user-defined types, operators translate into 
calling a user-provided function, so all bets are 
off!  (the function could execute in linear time, 
or in any case, in ω(1))
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● Notice that, even though memory allocation and 
deallocation (with new/delete) can be slower 
than the other operations by a factor of possibly 
several hundred, they are still Θ(1) — not really 
a constant amount of time, but upper-bounded 
by a constant, and thus constant time in the 
sense of being Θ(1).
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● Expressions (e.g., arithmetic or logical 
expressions) are nothing more than an 
arrangement of a fixed number of operators;  
thus, they are also Θ(1).
● Careful — if the expression involves calling 

functions, then we have to first figure out (or find 
out — presumably through its documentation) the 
runtime of the function:  it may not be Θ(1) !
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● We could take it a little further and think of 
“higher-level” operations such as swapping two 
variables, and consider them (when possible) a 
single operation running in Θ(1):

    int tmp = a;
    a = b;
    b = tmp;

● Three operations, Θ(1) each — thus, as a 
whole, swapping two integers takes Θ(1).
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● Another example:  inserting an element (say, a 
given value) to a linked list:

    Node * new_elem = new Node (value);
    new_elem->d_next = cur->next();
    cur->d_next = new_elem;



  

Algorithm Analysis

● Another example:  inserting an element (say, a 
given value) to a linked list:

    Node * new_elem = new Node (value);
    new_elem->d_next = cur->next();
    cur->d_next = new_elem;

● Shall we work on the board a graphical 
representation to make sure the above code is 
correct?
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● Even if it is a doubly-linked list:

    Node * new_elem = new Node (value);
    new_elem->d_next = cur->next();
    new_elem->d_prev = cur;
    cur->d_next = new_elem;
    cur->next()->d_prev = new_elem;
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● Even if it is a doubly-linked list:

    Node * new_elem = new Node (value);
    new_elem->d_next = cur->next();
    new_elem->d_prev = cur;
    cur->d_next = new_elem;
    cur->next()->d_prev = new_elem;

● Ok, so there is this severe bug, as we just saw 
on the board, and that hopefully you will fix;  but 
that does not change the example — it is a 
fixed number of operations, and thus Θ(1).
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● Next we'll look at these flow-control statements:
● Conditionals  (if, if – else, switch)
● Loops  (for, while, do while)
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● In both cases, there are two aspects to 
consider:
● The time that it takes to determine what to do (e.g., 

whether or not to execute a block, whether or not to 
continue to the next pass of the loop, etc.).

● How does the outcome of the decision affects the 
operations count.



  

Algorithm Analysis

● In both cases, there are two aspects to 
consider:
● The time that it takes to determine what to do (e.g., 

whether or not to execute a block, whether or not to 
continue to the next pass of the loop, etc.).

● How does the outcome of the decision affects the 
operations count.

● Notice that in nested control statements, we 
must work starting from the inner-most and 
working our way out.



  

Algorithm Analysis

● To determine what to do, a condition has to be 
evaluated — but a condition is nothing more 
than an expression (one that evaluates to a 
boolean value), and thus, it takes constant time
● Again, careful — if, as part of the condition, we call 

a function, then further analysis is necessary.
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● Once we determine this, then we count 
operations accordingly — for a conditional 
instruction (e.g., an if statement), we just add or 
don't add the runtime of the block associated to 
the if.
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● Possibly trick question — what is the run time 
of the following “conditionally swap”?

if (a > b)
{
    int tmp = a;
    a = b;
    b = tmp;
}
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● Possibly trick question — what is the run time 
of the following “conditionally swap”?

if (a > b)
{
    int tmp = a;
    a = b;
    b = tmp;
}

● Hopefully, you saw this one coming:  Θ(1)  
(what a surprise, huh?  :-) )
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● Switch statements are actually a very efficient 
form of of a bunch of if – else if in a row.  Thus, 
not surprisingly, the decision part of a switch 
statement runs in Θ(1).

● The requirement is that the cases be compile-
time integral constants — thus, the compiler 
implements a so-called jump table, translating 
the whole thing into possibly a single assembly-
level instruction!  (some times a few of them)
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● Of course, that's for the decision part only;  if 
the instructions in the selected case statement 
runs in ω(1), then we would take that into 
account as required.
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● Example  (perhaps trick question?):

What is the run time of the following?

● So, we need to know the fraction
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● Example  (perhaps trick question?):

What is the run time of the following?

switch (user_selection)
{
    case 'a':
        // something Θ(1), then break;
    case 'b':
        // something Θ(log n), then break;
    case 'c':
        // something Θ(n), then break;
    default:
        // Print error message, presumably Θ(1)
}
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● Presumably, we're doing worst-case analysis, 
so we'd have to take the Θ(n) path.
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● Perhaps an even trickier question — what is the 
average-case run time of that fragment?  In 
particular, how do the probabilities of each 
selection affect the average-case run time?
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● Perhaps an even trickier question — what is the 
average-case run time of that fragment?  In 
particular, how do the probabilities of each 
selection affect the average-case run time?

● Not surprising that it is also Θ(n) — as long as 
the fraction for the case 'c' is nonzero, then the 
weighted average shows the term Θ(n), so the 
result is Θ(n):  T(n) = w1·1 + w2·log n + w3·n = 

Θ(n)  if w3 ≠ 0
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● With loops (both for and while loops), there is 
inititlization, per-pass condition check and 
update of the control variable.

● These usually take Θ(1) — thus, the important 
part to figure out is how many times it will run, 
and multiply the run time of the body of the loop 
times the number of times it runs.
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● For example, the following loop:

for (int i = 0; i < n; i++)
{
    // code that executes in Θ(f(n))
}

● Runs in Θ(n f(n)) — Θ(1) + n × (Θ(1) + Θ(f(n)))
● Why each of the terms above?
● Why is Θ(1) + Θ(f(n)) = Θ(f(n)) ??
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● Θ(1) for the initialization of the control variable.
● Then, n times evaluating the condition and 

increasing the control variable (Θ(1)) and n 
times executing code that is Θ(f(n)).

● Θ(1) + Θ(f(n)) has to be Θ(f(n)) — the lowest 
f(n) can be is 1 (in which case the sum would 
be Θ(1);  anything above, it makes Θ(1) 
negligible, so the sum is Θ(f(n))
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● Hmm...  Problem:  how do we know how many 
times something like this will run?
 

int total = 0;
for (int i = 0; 
         i < size && values[i] >= 0; 
         i++)
{
    total += values[i];
}
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● We keep in mind the distinction between worst-
case analysis and average-case analysis.

● So, what would be the worst-case runtime of 
the previous fragment that adds all values in an 
array of n elements, stopping at the first 
negative value?
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● We keep in mind the distinction between worst-
case analysis and average-case analysis.

● So, what would be the worst-case runtime of 
the previous fragment that adds all values in an 
array of n elements, stopping at the first 
negative value?

● How about a tough one — what would be the 
average-case run time?
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● Worst case is straightforward — the loop could 
go until the end of the array (if the array 
contains no negative values).

● The actual average-case run time may be 
tough to compute (plus, we'd need a model of 
the probabilities of each values, etc.).  But we 
should suspect that for whatever probability 
distribution, the average is going to be a given 
(non-zero) fraction of the total — so, surprise 
surprise!!  The average case is also Θ(n) !!  :-)
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● Another example:  what is the run time of the 
loop below?

for (int i = 1; i < n; i *= 2)
{
    // Something that is Θ(1)
}
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● Another example:  what is the run time of the 
loop below?

for (int i = 1; i < n; i *= 2)
{
    // Something that is Θ(1)
}

● By now, I would certainly hope that I've 
bothered you enough with this that you'll see 
the answer right away!!  (yes?)
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● Now for nested loops:  what is the run time of 
the fragment below?

int sum = 0;
for (int i = 1; i < n; i++)
{
    for (int k = 0; k < i; k++)
    {
        sum += i+k;
    }
}

● Same comment as for previous slide  :-)
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● What about functions?
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● What about functions?
● For the most part, functions are quite easy to 

handle:  calling a function involves setting up a 
few things, adjusting the CPU stack, a few 
registers, saving the current values of the 
registers, etc.
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● What about functions?
● For the most part, functions are quite easy to 

handle:  calling a function involves setting up a 
few things, adjusting the CPU stack, a few 
registers, saving the current values of the 
registers, etc.

● Not only these are a fixed number of 
instructions, and thus Θ(1) — on most modern 
CPUs, this is done with a single assembly-level 
instruction!  (because the task is so common!)



  

Algorithm Analysis

● Notice that inline functions may change the 
rules, reducing this time to 0  (and for that 
matter, the optimizing stage of the compiler 
could radically change the situation).

● (if you're unfamiliar with this notion, look up — 
not now; after class, of course! — “C++ inline 
functions” to find out)

● However, since we're often doing worst-case 
analysis, it's ok to assume no inlining and no 
aggressive optimizations.



  

Algorithm Analysis

● Bottom line:

With functions, the analysis typically boils down 
to either figuring out, or finding out through the 
function's documentation, what the run time of 
the function is, and add it as you would add the 
run time of any fragment of code in its place.



  

Algorithm Analysis

● Figuring out the run time of a function is not 
unlike figuring out the run time of any other 
block of code — after all, a function is a block of 
code  (properly identified and “packaged” so 
that it can be called from multiple places).



  

Algorithm Analysis

● Figuring out the run time of a function is not 
unlike figuring out the run time of any other 
block of code — after all, a function is a block of 
code  (properly identified and “packaged” so 
that it can be called from multiple places).

● BTW, all of this applies as well to member 
functions in a class!
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● The only caveat is when a function calls itself  
(i.e., a recursive function)

● Not too bad, though — the situation usually 
boils down to a recurrence relation;  the run 
time of the function that we're trying to figure 
out includes the recursive call to itself, typically 
for a problem with lower size  (otherwise the 
recursion would never end, right?)
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● An example:   let's do a (somewhat silly) 
recursive version of finding the highest value in 
an array — we split the array in two halves, 
recursively call the function to find the highest 
in each of the two halves, and return the higher 
of the two returned values.

● The base case being an array of 1 element, in 
which case the highest value is the (only) value.
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● Something like this  (for simplicity, assume n is 
a power of 2):
int find_max (const int * array, int n)
{
    if (n == 1)
    {
        return array[0];
    }
 

    return std::max (find_max (array, n/2), 
                     find_max (array + n/2, n/2));
}
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● So, the run time is the sum of three parts:
● The “setup” to call the function and pass the 

parameters  (we know this is Θ(1)).
● The if block  (which we now know that is Θ(1))
● Two times the run time of the function for half the 

size (well, plus a Θ(1) for std::max to determine the 
higher of the two values)



  

Algorithm Analysis

● So, the run time is the sum of three parts:
● The “setup” to call the function and pass the 

parameters  (we know this is Θ(1)).
● The if block  (which we now know that is Θ(1))
● Two times the run time of the function for half the 

size (well, plus a Θ(1) for std::max to determine the 
higher of the two values)

● And what do we think the above is?  
● Let's write the recurrence relation:
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● If we use T(n) to denote the run Time, we have:

● This may look new (we had not seen 
recurrence relations involving Landau symbols), 
but it's really the same we've been doing:
● The Landau symbol defines a family of functions: 

c·1 for any constant c.

T(n)=2 T(n /2)+Θ(1)
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● So, we can rewrite the relation as:

● And solve maintaining c as an unknown value, 
to obtain Θ(n).

● But intuitively, you should see it — what 
function is twice the value of the function for 
half the value of the argument?

T(n)=2 T(n /2)+c⋅1



  

Summary

● During today's class, we discussed:
● Applying asymptotic analysis techniques to actual 

algorithms to figure out their run time.
● Some of the common language constructs and their 

effect on the run time of algorithms
● Analysis of recursive functions leading to 

recurrence relations.
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