

Algorithm Analysis

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Θ(n)
Ω(log n)

Θ(1)

Algorithm Analysis

Standard reminder to set phones to
silent/vibrate mode, please!

Algorithm Analysis

● Previously, on ECE-250...
● We looked at:

– Asymptotic Analysis
– Asymptotic notation
– Tried to figure out run times (in asymptotic notation) for

some simple algorithms from their description

Algorithm Analysis

● In today's class:
● We'll look in more detail at the analysis of

algorithms.
● In particular, given an algorithm, analyze it to

determine its run time and space requirements
– (In today's examples, we'll put some more emphasis on

runtimes — when dealing with data structures and
operations on them, we'll probably put the emphasis on
space requirements)

● We'll look into some of the common constructs in
C++ (should be useful for the general case)

Algorithm Analysis

● Analyzing algorithms typically involves:
● Counting instances of execution for the various

sections:
– A program may be three or four lines, yet those could

translate into several thousand operations (e.g., loops)
– (BTW, what else, other than loops?)

● Figuring out the run time for each of the simpler
parts.

● Compute totals and figure out the appropriate class
(as in, which Landau symbol and what function)

Algorithm Analysis

● We already mentioned the issue of counting
operations when the number of times
something executes depends on the data (and
thus, may vary from execution to execution)

● We also mentioned that if we're restricted to
one figure to describe the algorithm, then we
use the worst-case analysis.
● In some (perhaps most) cases, it is also a good

idea to include average-case analysis as well.

Algorithm Analysis

● We'll look at:
● Operators and expressions
● Control statements

– Conditional statements and loops
● Functions
● Recursive functions (if enough time)

Algorithm Analysis

● Operators, as a general rule, map to one or a
few (as in, a fixed number of) assembly-level
instructions.

● For example, the statement a += b; could
map to something like:

 addl %eax, -4(%rbp)

Algorithm Analysis

● This automatically tells us that these operators'
run time is Θ(1)

● This includes:
● Reading variables / assigning variables (=)
● Arithmetic operations (+, −, *, /, %, ++, --)
● Logical and bitwise operations (and/or/not/xor)
● Comparisons (==, !=, <, <=, >, >=)
● Subscripting ([]) and dereferencing (*, ->)
● Memory allocation and deallocation (new, delete)

Algorithm Analysis

● However, there may be exceptions: with
strings, comparison operators can take linear
time (if measured with respect to the length of
the string), and so does operator + (for strings,
this means concatenation).

● And for that matter, with operators used on
user-defined types, operators translate into
calling a user-provided function, so all bets are
off! (the function could execute in linear time,
or in any case, in ω(1))

Algorithm Analysis

● Notice that, even though memory allocation and
deallocation (with new/delete) can be slower
than the other operations by a factor of possibly
several hundred, they are still Θ(1) — not really
a constant amount of time, but upper-bounded
by a constant, and thus constant time in the
sense of being Θ(1).

Algorithm Analysis

● Expressions (e.g., arithmetic or logical
expressions) are nothing more than an
arrangement of a fixed number of operators;
thus, they are also Θ(1).
● Careful — if the expression involves calling

functions, then we have to first figure out (or find
out — presumably through its documentation) the
runtime of the function: it may not be Θ(1) !

Algorithm Analysis

● We could take it a little further and think of
“higher-level” operations such as swapping two
variables, and consider them (when possible) a
single operation running in Θ(1):

 int tmp = a;
 a = b;
 b = tmp;

● Three operations, Θ(1) each — thus, as a
whole, swapping two integers takes Θ(1).

Algorithm Analysis

● Another example: inserting an element (say, a
given value) to a linked list:

 Node * new_elem = new Node (value);
 new_elem->d_next = cur->next();
 cur->d_next = new_elem;

Algorithm Analysis

● Another example: inserting an element (say, a
given value) to a linked list:

 Node * new_elem = new Node (value);
 new_elem->d_next = cur->next();
 cur->d_next = new_elem;

● Shall we work on the board a graphical
representation to make sure the above code is
correct?

Algorithm Analysis

● Even if it is a doubly-linked list:

 Node * new_elem = new Node (value);
 new_elem->d_next = cur->next();
 new_elem->d_prev = cur;
 cur->d_next = new_elem;
 cur->next()->d_prev = new_elem;

Algorithm Analysis

● Even if it is a doubly-linked list:

 Node * new_elem = new Node (value);
 new_elem->d_next = cur->next();
 new_elem->d_prev = cur;
 cur->d_next = new_elem;
 cur->next()->d_prev = new_elem;

● Ok, so there is this severe bug, as we just saw
on the board, and that hopefully you will fix; but
that does not change the example — it is a
fixed number of operations, and thus Θ(1).

Algorithm Analysis

● Next we'll look at these flow-control statements:
● Conditionals (if, if – else, switch)
● Loops (for, while, do while)

Algorithm Analysis

● In both cases, there are two aspects to
consider:
● The time that it takes to determine what to do (e.g.,

whether or not to execute a block, whether or not to
continue to the next pass of the loop, etc.).

● How does the outcome of the decision affects the
operations count.

Algorithm Analysis

● In both cases, there are two aspects to
consider:
● The time that it takes to determine what to do (e.g.,

whether or not to execute a block, whether or not to
continue to the next pass of the loop, etc.).

● How does the outcome of the decision affects the
operations count.

● Notice that in nested control statements, we
must work starting from the inner-most and
working our way out.

Algorithm Analysis

● To determine what to do, a condition has to be
evaluated — but a condition is nothing more
than an expression (one that evaluates to a
boolean value), and thus, it takes constant time
● Again, careful — if, as part of the condition, we call

a function, then further analysis is necessary.

Algorithm Analysis

● Once we determine this, then we count
operations accordingly — for a conditional
instruction (e.g., an if statement), we just add or
don't add the runtime of the block associated to
the if.

Algorithm Analysis

● Possibly trick question — what is the run time
of the following “conditionally swap”?

if (a > b)
{
 int tmp = a;
 a = b;
 b = tmp;
}

Algorithm Analysis

● Possibly trick question — what is the run time
of the following “conditionally swap”?

if (a > b)
{
 int tmp = a;
 a = b;
 b = tmp;
}

● Hopefully, you saw this one coming: Θ(1)
(what a surprise, huh? :-))

Algorithm Analysis

● Switch statements are actually a very efficient
form of of a bunch of if – else if in a row. Thus,
not surprisingly, the decision part of a switch
statement runs in Θ(1).

● The requirement is that the cases be compile-
time integral constants — thus, the compiler
implements a so-called jump table, translating
the whole thing into possibly a single assembly-
level instruction! (some times a few of them)

Algorithm Analysis

● Of course, that's for the decision part only; if
the instructions in the selected case statement
runs in ω(1), then we would take that into
account as required.

Algorithm Analysis

● Example (perhaps trick question?):

What is the run time of the following?

● So, we need to know the fraction

Algorithm Analysis

● Example (perhaps trick question?):

What is the run time of the following?

switch (user_selection)
{
 case 'a':
 // something Θ(1), then break;
 case 'b':
 // something Θ(log n), then break;
 case 'c':
 // something Θ(n), then break;
 default:
 // Print error message, presumably Θ(1)
}

Algorithm Analysis

● Presumably, we're doing worst-case analysis,
so we'd have to take the Θ(n) path.

Algorithm Analysis

● Perhaps an even trickier question — what is the
average-case run time of that fragment? In
particular, how do the probabilities of each
selection affect the average-case run time?

Algorithm Analysis

● Perhaps an even trickier question — what is the
average-case run time of that fragment? In
particular, how do the probabilities of each
selection affect the average-case run time?

● Not surprising that it is also Θ(n) — as long as
the fraction for the case 'c' is nonzero, then the
weighted average shows the term Θ(n), so the
result is Θ(n): T(n) = w1·1 + w2·log n + w3·n =

Θ(n) if w3 ≠ 0

Algorithm Analysis

● With loops (both for and while loops), there is
inititlization, per-pass condition check and
update of the control variable.

● These usually take Θ(1) — thus, the important
part to figure out is how many times it will run,
and multiply the run time of the body of the loop
times the number of times it runs.

Algorithm Analysis

● For example, the following loop:

for (int i = 0; i < n; i++)
{
 // code that executes in Θ(f(n))
}

● Runs in Θ(n f(n)) — Θ(1) + n × (Θ(1) + Θ(f(n)))
● Why each of the terms above?
● Why is Θ(1) + Θ(f(n)) = Θ(f(n)) ??

Algorithm Analysis

● Θ(1) for the initialization of the control variable.
● Then, n times evaluating the condition and

increasing the control variable (Θ(1)) and n
times executing code that is Θ(f(n)).

● Θ(1) + Θ(f(n)) has to be Θ(f(n)) — the lowest
f(n) can be is 1 (in which case the sum would
be Θ(1); anything above, it makes Θ(1)
negligible, so the sum is Θ(f(n))

Algorithm Analysis

● Hmm... Problem: how do we know how many
times something like this will run?

int total = 0;
for (int i = 0;
 i < size && values[i] >= 0;
 i++)
{
 total += values[i];
}

Algorithm Analysis

● We keep in mind the distinction between worst-
case analysis and average-case analysis.

● So, what would be the worst-case runtime of
the previous fragment that adds all values in an
array of n elements, stopping at the first
negative value?

Algorithm Analysis

● We keep in mind the distinction between worst-
case analysis and average-case analysis.

● So, what would be the worst-case runtime of
the previous fragment that adds all values in an
array of n elements, stopping at the first
negative value?

● How about a tough one — what would be the
average-case run time?

Algorithm Analysis

● Worst case is straightforward — the loop could
go until the end of the array (if the array
contains no negative values).

● The actual average-case run time may be
tough to compute (plus, we'd need a model of
the probabilities of each values, etc.). But we
should suspect that for whatever probability
distribution, the average is going to be a given
(non-zero) fraction of the total — so, surprise
surprise!! The average case is also Θ(n) !! :-)

Algorithm Analysis

● Another example: what is the run time of the
loop below?

for (int i = 1; i < n; i *= 2)
{
 // Something that is Θ(1)
}

Algorithm Analysis

● Another example: what is the run time of the
loop below?

for (int i = 1; i < n; i *= 2)
{
 // Something that is Θ(1)
}

● By now, I would certainly hope that I've
bothered you enough with this that you'll see
the answer right away!! (yes?)

Algorithm Analysis

● Now for nested loops: what is the run time of
the fragment below?

int sum = 0;
for (int i = 1; i < n; i++)
{
 for (int k = 0; k < i; k++)
 {
 sum += i+k;
 }
}

● Same comment as for previous slide :-)

Algorithm Analysis

● What about functions?

Algorithm Analysis

● What about functions?
● For the most part, functions are quite easy to

handle: calling a function involves setting up a
few things, adjusting the CPU stack, a few
registers, saving the current values of the
registers, etc.

Algorithm Analysis

● What about functions?
● For the most part, functions are quite easy to

handle: calling a function involves setting up a
few things, adjusting the CPU stack, a few
registers, saving the current values of the
registers, etc.

● Not only these are a fixed number of
instructions, and thus Θ(1) — on most modern
CPUs, this is done with a single assembly-level
instruction! (because the task is so common!)

Algorithm Analysis

● Notice that inline functions may change the
rules, reducing this time to 0 (and for that
matter, the optimizing stage of the compiler
could radically change the situation).

● (if you're unfamiliar with this notion, look up —
not now; after class, of course! — “C++ inline
functions” to find out)

● However, since we're often doing worst-case
analysis, it's ok to assume no inlining and no
aggressive optimizations.

Algorithm Analysis

● Bottom line:

With functions, the analysis typically boils down
to either figuring out, or finding out through the
function's documentation, what the run time of
the function is, and add it as you would add the
run time of any fragment of code in its place.

Algorithm Analysis

● Figuring out the run time of a function is not
unlike figuring out the run time of any other
block of code — after all, a function is a block of
code (properly identified and “packaged” so
that it can be called from multiple places).

Algorithm Analysis

● Figuring out the run time of a function is not
unlike figuring out the run time of any other
block of code — after all, a function is a block of
code (properly identified and “packaged” so
that it can be called from multiple places).

● BTW, all of this applies as well to member
functions in a class!

Algorithm Analysis

● The only caveat is when a function calls itself
(i.e., a recursive function)

● Not too bad, though — the situation usually
boils down to a recurrence relation; the run
time of the function that we're trying to figure
out includes the recursive call to itself, typically
for a problem with lower size (otherwise the
recursion would never end, right?)

Algorithm Analysis

● An example: let's do a (somewhat silly)
recursive version of finding the highest value in
an array — we split the array in two halves,
recursively call the function to find the highest
in each of the two halves, and return the higher
of the two returned values.

● The base case being an array of 1 element, in
which case the highest value is the (only) value.

Algorithm Analysis

● Something like this (for simplicity, assume n is
a power of 2):
int find_max (const int * array, int n)
{
 if (n == 1)
 {
 return array[0];
 }

 return std::max (find_max (array, n/2),
 find_max (array + n/2, n/2));
}

Algorithm Analysis

● So, the run time is the sum of three parts:
● The “setup” to call the function and pass the

parameters (we know this is Θ(1)).
● The if block (which we now know that is Θ(1))
● Two times the run time of the function for half the

size (well, plus a Θ(1) for std::max to determine the
higher of the two values)

Algorithm Analysis

● So, the run time is the sum of three parts:
● The “setup” to call the function and pass the

parameters (we know this is Θ(1)).
● The if block (which we now know that is Θ(1))
● Two times the run time of the function for half the

size (well, plus a Θ(1) for std::max to determine the
higher of the two values)

● And what do we think the above is?
● Let's write the recurrence relation:

Algorithm Analysis

● If we use T(n) to denote the run Time, we have:

● This may look new (we had not seen
recurrence relations involving Landau symbols),
but it's really the same we've been doing:
● The Landau symbol defines a family of functions:

c·1 for any constant c.

T(n)=2 T(n /2)+Θ(1)

Algorithm Analysis

● So, we can rewrite the relation as:

● And solve maintaining c as an unknown value,
to obtain Θ(n).

● But intuitively, you should see it — what
function is twice the value of the function for
half the value of the argument?

T(n)=2 T(n /2)+c⋅1

Summary

● During today's class, we discussed:
● Applying asymptotic analysis techniques to actual

algorithms to figure out their run time.
● Some of the common language constructs and their

effect on the run time of algorithms
● Analysis of recursive functions leading to

recurrence relations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

