

Containers and Relations

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Containers and Relations

Standard reminder to set phones to
silent/vibrate mode, please!

Containers and Relations

● In today's class:
● We'll investigate Containers and the constraints on these

according to the data they store.
● In particular, we'll focus on the relationships in the data

that constraint the data structures — we'll investigate:
– Linear (or total) ordering
– Partial ordering
– Hierarchical ordering
– Equivalence relations
– Weak ordering.
– Adjacency relations

Containers and Relations

● Let's start with a (rather open) question:

How do we store data in memory for an
algorithm or for algorithms to work with it?

Containers and Relations

● Let's start with a (rather open) question:

How do we store data in memory for an
algorithm or for algorithms to work with it?

● Can we really answer that question as posed?

Containers and Relations

● Say that we try to answer it — something like
«well, we use classes to represent things from
the real world that we need to deal with, and
that simply creates a memory layout for an
object to be represented in the memory of a
computer. The rest follows directly — if we
have many of those objects, we just store one
after the other»

Containers and Relations

● Say that we try to answer it — something like
«well, we use classes to represent things from
the real world that we need to deal with, and
that simply creates a memory layout for an
object to be represented in the memory of a
computer. The rest follows directly — if we
have many of those objects, we just store one
after the other»

● Well, ok, we create a class that “contains” them
(i.e., a class to represent a collection of them)

Containers and Relations

● Let's give that class some fancy name, say,
let's call it a Container, and problem solved!

Containers and Relations

● Let's give that class some fancy name, say,
let's call it a Container, and problem solved!

● Ok, so I didn't mean to sound sarcastic with the
fancy name — we will actually call them
containers :-)

Containers and Relations

● Let's give that class some fancy name, say,
let's call it a Container, and problem solved!

● Ok, so I didn't mean to sound sarcastic with the
fancy name — we will actually call them
containers :-)

● The “delusional” part is pretending that such a
simple approach like storing one object after
the other in memory will solve our data storage
and processing problems!

Containers and Relations

● The trick of storing objects sequentially could
work in many cases — that's what an array or a
linked list is; they're good to store a group of
values or a group of objects (e.g., an array of
100+ students for the purpose of processing
grades and automating the grade reporting
process)

Containers and Relations

● However, let's picture this:
We create a class to represent a City (perhaps
with geographic coordinates — latitude and
longitude).

● Then one class to represent roads, avenues
and freeways/highways; perhaps we use a
class Polygon with a linked list of vertices to
represent the geometry of the particular road.

Containers and Relations

● And then, well, we just set up a container to
hold a collection of each of those ...

● Quite easy, right? Just declare:

Single_list<City> north_american_cities;
Single_list<Road> north_american_roads;

● How far do we think these will take us??
(Hint: try to find the shortest, or fastest, route
from, say, Waterloo to Quebec City)

Containers and Relations

● The take-away from this example is that
depending on what we need to do with the
data, we'll need to store it differently.

● And it's really the types of relationships
between data items that most often determine
what we can or cannot do easily, as well as
how should we store the data to accomplish
those “typical” tasks.

Containers and Relations

● Notice that some of the operations on the
containers themselves may be affected by the
type of data — or more specifically, by the
existing relationships between data items.

● For example, a typical operation we may expect
from a container is a method max(), that returns
the highest element currently stored by the
container.

● Would that make sense for the list of cities??

Containers and Relations

● It's not because in C++ or in Java or in
whatever language we can't figure out how to
do that: it's really a matter of the relationships
between data items (cities, in this example):
There is no greater-than relationship for cities!

Relationships

● We'll look at the following types of relationships:
● Linear or Total ordering
● Partial ordering
● Hierarchical ordering
● Equivalence relations
● Weak ordering
● Adjacency relations

Relationships

● Linear or Total ordering:
● A binary relationship (we'll use ◄ to denote it) on

the elements of a set A with the following properties:
for every pair of elements x, y, z A, it holds that:∈
– If x ◄ y and y ◄ x, then x = y (antisymmetry)
– If x ◄ y and y ◄ x, then x ◄ z (transitivity)
– Either x ◄ y or y ◄ x (totality)

Relationships

● The most typical (and perhaps simplest)
example of linear or total ordering is the order
in the real (or integer, or rational) numbers
given by the relationship < or ≤

● The intuitive meaning is that we can place the
elements in order (given antisymmetry and
transitivity) using a one-dimensional (linear)
arrangement (given the totality)

Relationships

● A non-example is the complex numbers, or the
set of points in the plane or in the space.

● Even if we attempt something like ordering by
magnitude, it's easy to verify that it won't work
(i.e., it won't satisfy the three properties)

● We simply can not place them in a linear
arrangement where the order is given by the
relationship.

Relationships

● Lexicographical ordering:
● An interesting extension is the notion of orderings

induced by a given total ordering.
● For example, the English alphabet is a totally

ordered set (the relationship being defined by the
order of the letters).

● This induces a total ordering in words (sequences
of letters) — we usually/informally refer to this as
“alphabetic” order; the “formal” term should be
lexicographical order.

Relationships

● Lexicographical ordering:
● Lexicographical order in a pair of elements of a

totally ordered set is given by:

x1x2 ◄ y1y2 if:

– x1 ◄ y1

OR

– x1 = y1 AND x2 ◄ y2

● The definition can be recursively extended to
sequences of more than two elements.

Relationships

● Typical operations on a container for totally
ordered elements (a sequential container) are:
● Determine first and last elements
● What is the kth element?
● Given an element in the container:

– What is the previous element?
– What is the next element?

Relationships

● Partial ordering:
● Similar to total ordering, except that it does not

require totality; that is, not every pair of elements
need to be related by the binary relationship.

● This leads to a relationship that is somewhat similar
to a hierarchical relationship (emphasis in the
somewhat similar — they're two different things)

Relationships

● One of the typical examples for this ordering
relation is divisibility in the set of positive
integer numbers — the relation n ◄ m
represents the condition “n divides m”

● Notice that we can't place the numbers in linear
order due to lack of totality — for example,
given 5 and 7, neither 5 ◄ 7 nor 7 ◄ 5, so
which one would we put first??

● (we can't say «we put 5 first since 5 is less than
7», since that obeys a different relationship)

Relationships

● However, we could draw them in a “graph” or
“lattice” graphical representation:

1

2 3

4

5

6 7

8

910

Relationships

● And seeing that graphical representation, does
that give you any ideas? That is, can you
suggest some other example(s) of partial
ordering?

Relationships

● Typical operations on containers with partially
ordered elements:
● Given two elements: does one precede the other?
● Find the elements which have no predecessors.
● Given an element in the container, determine the

set of elements that immediately precede it

Relationships

● Hierarchical ordering
● This can be seen as a constrained type of partial

ordering — one where there may be no loops:
– That is, if you follow the paths formed by consecutive

arrows representing relationship between pairs of
elements, you can never get to the same element
following different paths.

● And also, there must be a single “root” (a single
element that has no predecessors).

Relationships

● As we will see (later on during the course),
hierarchical relations are represented by Trees.

Relationships

● An example of hierarchical relation is that of
ancestry — but only if we restrict it to one
ancestor; for example, a maternal ancestor.
(why do we need this restriction?)

Relationships

● Another example: structure of directories and
sub-directories on a file system.

Relationships

● Typical operations on hierarchical data:
● Given two elements, does one precede the other?
● Are two given elements at the same depth?
● Given two elements, find the nearest common

predecessor.

Relationships

● Equivalence relations:
● An equivalence relation on a set A, denoted ~, has

the following three properties for every x, y, z A:∈
– Reflexivity (x ~ x)
– Symmetry (x ~ y ⇒ y ~ x)
– Transitivity (if x ~ y and y ~ z, then x ~ z)

Relationships

● Equivalence relations:
● An interesting (and important) characteristic of

every equivalence relation is that it partitions the set
into disjoint subsets, called equivalence classes.

● Every element in an equivalence class is related to
every other element in the same equivalence class,
and is related to no other element in the set (i.e., in
any other equivalence class)

(why? Can you prove this, based on the properties
that define equivalence relation?)

Relationships

● Equivalence relations:
● A consequence of this is that you can identify an

entire class (one of the equivalence classes) by
picking one element of that class — a class
representative.

Relationships

● Examples of Equivalence relations:
● People with the same age — clearly, this partitions

the population (or whatever subset that we're
considering) into disjoint (non-overlapping) sets:
people who are 1 year old, people who are 2 year
old, and so on; everyone in one of these groups is
related to everyone else in that group (since they
have the same age!), and is related to no-one in
any other groups (since they do not have the same
age).

Relationships

● Examples of Equivalence relations:
● Notice that in this example, we don't need to pick a

class representative to identify one class — we
could simply identify the classes by the age (when
we say “people who are 20 years of age”, we are
unambiguously identifying that subset of people)

● Still, we could pick one of those persons (any one),
and we would still unambiguously identify the entire
class by using that class representative)

Relationships

● Examples of Equivalence relations:
● A more mathematical example: the numbers

modulo m.
● The relation being: two numbers are related

(equivalent) if they have the same value modulo m.
(that is, numbers that have the same remainder
when dividing by m).

● This equivalence relation partitions the set of
integer numbers into m equivalence classes.

Relationships

● Examples of Equivalence relations:
● For example, if m = 100, then two numbers are

related if the last two digits are the same
(assuming digits in decimal representation, of
course)

● We observe that in this case, by picking a class
representative (one of the numbers), we identify the
entire equivalence class:
– The number 73 (in this context) automatically identifies

the set {73 + 100 k | k ∈ Z}

Relationships

● There is one example that we have seen and
we have been using (quite a lot, actually!) in
class (in the previous few classes).

● Can you think of such example? And explain
why it constitutes an equivalence relation?

Relationships

● Typical operations for an equivalence relation:
● Are two given elements related?
● Iterate through all elements related to a particular

element (equivalently, iterate through all the
elements of an equivalence class, as specified by
any given class representative)

Relationships

● Weak ordering:
● The mathematical definition is somewhat

tricky/involved (though it is quite neat! I invite you
to look it up on, say, Wikipedia — not today, though!
Kudos to Wikipedia for their blackout today!)

● But the idea being that a weak ordering is a linear
or total ordering of equivalence classes.

Relationships

● Weak ordering:
● The mathematical definition is somewhat

tricky/involved (though it is quite neat! I invite you
to look it up on, say, Wikipedia — not today, though!
Kudos to Wikipedia for their blackout today!)

● But the idea being that a weak ordering is a linear
or total ordering of equivalence classes.

● An example being, ordering persons by age; we
can arrange the groups in a linear fashion.

Relationships

● Given a weak ordering, typical operations are
the same as those for linear orderings and
equivalence classes.

● However:
● The smallest and largest elements are not

necessarily unique (leading to the common notion
that a smallest element is one such that no other
element is smaller than it)

● Next or previous elements may be equivalent.

Relationships

● Adjacency relations:
● Adjacency relations can be defined in an abstract

way as a relationship between the elements of a set
where the only possible (though not necessary)
constraints would be reflexivity and symmetry:
– No transitivity, no totality.

Relationships

● Typical examples are relationships given by
some form of “connections”:
● x ~ y if x and y are friends (presumably this is an

example where the relation is symmetric)
– For Social networks systems, this seems like the most

fundamental notion to consider!

● Physical adjacency is another obvious example
(i.e., “being neighbour”)

Relationships

● Concrete examples of physical adjacency are:
● Intersections in a city: streets represent the

relationship between two intersections — i.e., two
intersections are related (adjacent) if they are
directly connected by a street.

● Circuit elements — points in a circuit are “adjacent”
if there is a trace (a connection) between them.

Relationships

● Adjacency relations are typically represented by
Graphs — elements are only aware of their
neighbouring, or adjacent elements, without
any global relationship being directly present.

(we'll see a lot of this later on during the
course!)

Relationships

● Typical operations on a container aware of
adjacency relations (a graph):
● Are two elements adjacent?
● Iterate through all the elements adjacent to a given

element.
● Given two elements x and y, is there a sequence of

adjacent elements that connect x to y?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

