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Containers and Relations

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Containers and Relations

● In today's class:
● We'll investigate Containers and the constraints on these 

according to the data they store.
● In particular, we'll focus on the relationships in the data 

that constraint the data structures — we'll investigate:
– Linear (or total) ordering
– Partial ordering
– Hierarchical ordering
– Equivalence relations
– Weak ordering.
– Adjacency relations



  

Containers and Relations

● Let's start with a (rather open) question:

How do we store data in memory for an 
algorithm or for algorithms to work with it?



  

Containers and Relations

● Let's start with a (rather open) question:

How do we store data in memory for an 
algorithm or for algorithms to work with it?

● Can we really answer that question as posed?



  

Containers and Relations

● Say that we try to answer it — something like 
«well, we use classes to represent things from 
the real world that we need to deal with, and 
that simply creates a memory layout for an 
object to be represented in the memory of a 
computer.  The rest follows directly — if we 
have many of those objects, we just store one 
after the other»



  

Containers and Relations

● Say that we try to answer it — something like 
«well, we use classes to represent things from 
the real world that we need to deal with, and 
that simply creates a memory layout for an 
object to be represented in the memory of a 
computer.  The rest follows directly — if we 
have many of those objects, we just store one 
after the other»

● Well, ok, we create a class that “contains” them 
(i.e., a class to represent a collection of them)



  

Containers and Relations

● Let's give that class some fancy name, say, 
let's call it a Container, and problem solved!
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● Let's give that class some fancy name, say, 
let's call it a Container, and problem solved!

● Ok, so I didn't mean to sound sarcastic with the 
fancy name — we will actually call them 
containers  :-)



  

Containers and Relations

● Let's give that class some fancy name, say, 
let's call it a Container, and problem solved!

● Ok, so I didn't mean to sound sarcastic with the 
fancy name — we will actually call them 
containers  :-)

● The “delusional” part is pretending that such a 
simple approach like storing one object after 
the other in memory will solve our data storage 
and processing problems!



  

Containers and Relations

● The trick of storing objects sequentially could 
work in many cases — that's what an array or a 
linked list is;  they're good to store a group of 
values or a group of objects  (e.g., an array of 
100+ students for the purpose of processing 
grades and automating the grade reporting 
process)



  

Containers and Relations

● However, let's picture this:
We create a class to represent a City (perhaps 
with geographic coordinates — latitude and 
longitude).

● Then one class to represent roads, avenues 
and freeways/highways;  perhaps we use a 
class Polygon with a linked list of vertices to 
represent the geometry of the particular road.



  

Containers and Relations

● And then, well, we just set up a container to 
hold a collection of each of those ... 

● Quite easy, right?   Just declare:

Single_list<City> north_american_cities;
Single_list<Road> north_american_roads;

● How far do we think these will take us??
(Hint:  try to find the shortest, or fastest, route 
from, say, Waterloo to Quebec City)



  

Containers and Relations

● The take-away from this example is that 
depending on what we need to do with the 
data, we'll need to store it differently.

● And it's really the types of relationships 
between data items that most often determine 
what we can or cannot do easily, as well as 
how should we store the data to accomplish 
those “typical” tasks.



  

Containers and Relations

● Notice that some of the operations on the 
containers themselves may be affected by the 
type of data — or more specifically, by the 
existing relationships between data items.

● For example, a typical operation we may expect 
from a container is a method max(), that returns 
the highest element currently stored by the 
container.

● Would that make sense for the list of cities??



  

Containers and Relations

● It's not because in C++ or in Java or in 
whatever language we can't figure out how to 
do that:  it's really a matter of the relationships 
between data items (cities, in this example):  
There is no greater-than relationship for cities!



  

Relationships

● We'll look at the following types of relationships:
● Linear or Total ordering
● Partial ordering
● Hierarchical ordering
● Equivalence relations
● Weak ordering
● Adjacency relations



  

Relationships

● Linear or Total ordering:
● A binary relationship (we'll use ◄ to denote it) on 

the elements of a set A with the following properties: 
for every pair of elements x, y, z  A, it holds that:∈
– If x ◄ y  and  y ◄ x, then  x = y  (antisymmetry)
– If x ◄ y  and  y ◄ x, then  x ◄ z  (transitivity)
– Either x ◄ y  or  y ◄ x  (totality)



  

Relationships

● The most typical (and perhaps simplest) 
example of linear or total ordering is the order 
in the real (or integer, or rational) numbers 
given by the relationship < or ≤

● The intuitive meaning is that we can place the 
elements in order (given antisymmetry and 
transitivity) using a one-dimensional (linear) 
arrangement (given the totality)



  

Relationships

● A non-example is the complex numbers, or the 
set of points in the plane or in the space.

● Even if we attempt something like ordering by 
magnitude, it's easy to verify that it won't work  
(i.e., it won't satisfy the three properties)

● We simply can not place them in a linear 
arrangement where the order is given by the 
relationship.



  

Relationships

● Lexicographical ordering:
● An interesting extension is the notion of orderings 

induced by a given total ordering.
● For example, the English alphabet is a totally 

ordered set  (the relationship being defined by the 
order of the letters).

● This induces a total ordering in words (sequences 
of letters) — we usually/informally refer to this as 
“alphabetic” order;  the “formal” term should be 
lexicographical order.



  

Relationships

● Lexicographical ordering:
● Lexicographical order in a pair of elements of a 

totally ordered set is given by:

x1x2 ◄ y1y2  if:

– x1 ◄ y1  

OR  

– x1 = y1  AND  x2 ◄ y2 

● The definition can be recursively extended to 
sequences of more than two elements.



  

Relationships

● Typical operations on a container for totally 
ordered elements (a sequential container) are:
● Determine first and last elements
● What is the kth element?
● Given an element in the container:

– What is the previous element?
– What is the next element?



  

Relationships

● Partial ordering:
● Similar to total ordering, except that it does not 

require totality;  that is, not every pair of elements 
need to be related by the binary relationship.

● This leads to a relationship that is somewhat similar 
to a hierarchical relationship  (emphasis in the 
somewhat similar — they're two different things)



  

Relationships

● One of the typical examples for this ordering 
relation is divisibility in the set of positive 
integer numbers — the relation n ◄ m 
represents the condition “n divides m”

● Notice that we can't place the numbers in linear 
order due to lack of totality — for example, 
given 5 and 7, neither 5 ◄ 7  nor  7 ◄ 5, so 
which one would we put first??

● (we can't say «we put 5 first since 5 is less than 
7», since that obeys a different relationship)



  

Relationships

● However, we could draw them in a “graph” or 
“lattice” graphical representation:

1

2 3
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5

6 7

8

910



  

Relationships

● And seeing that graphical representation, does 
that give you any ideas?  That is, can you 
suggest some other example(s) of partial 
ordering?



  

Relationships

● Typical operations on containers with partially 
ordered elements:
● Given two elements:  does one precede the other?
● Find the elements which have no predecessors.
● Given an element in the container, determine the 

set of elements that immediately precede it



  

Relationships

● Hierarchical ordering
● This can be seen as a constrained type of partial 

ordering — one where there may be no loops:
– That is, if you follow the paths formed by consecutive 

arrows representing relationship between pairs of 
elements, you can never get to the same element 
following different paths.

● And also, there must be a single “root” (a single 
element that has no predecessors).



  

Relationships

● As we will see (later on during the course), 
hierarchical relations are represented by Trees.



  

Relationships

● An example of hierarchical relation is that of 
ancestry — but only if we restrict it to one 
ancestor;  for example, a maternal ancestor.  
(why do we need this restriction?)



  

Relationships

● Another example:  structure of directories and 
sub-directories on a file system.



  

Relationships

● Typical operations on hierarchical data:
● Given two elements, does one precede the other?
● Are two given elements at the same depth?
● Given two elements, find the nearest common 

predecessor.



  

Relationships

● Equivalence relations:
● An equivalence relation on a set A, denoted ~, has 

the following three properties for every x, y, z  A:∈
– Reflexivity  (x ~ x)
– Symmetry   (x ~ y    ⇒ y ~ x)
– Transitivity   (if  x ~ y  and  y ~ z, then x ~ z)



  

Relationships

● Equivalence relations:
● An interesting (and important) characteristic of 

every equivalence relation is that it partitions the set 
into disjoint subsets, called equivalence classes.

● Every element in an equivalence class is related to 
every other element in the same equivalence class, 
and is related to no other element in the set (i.e., in 
any other equivalence class)

(why?  Can you prove this, based on the properties 
that define equivalence relation?)



  

Relationships

● Equivalence relations:
● A consequence of this is that you can identify an 

entire class (one of the equivalence classes) by 
picking one element of that class — a class 
representative.



  

Relationships

● Examples of Equivalence relations:
● People with the same age — clearly, this partitions 

the population (or whatever subset that we're 
considering) into disjoint (non-overlapping) sets:  
people who are 1 year old, people who are 2 year 
old, and so on;  everyone in one of these groups is 
related to everyone else in that group (since they 
have the same age!), and is related to no-one in 
any other groups (since they do not have the same 
age).



  

Relationships

● Examples of Equivalence relations:
● Notice that in this example, we don't need to pick a 

class representative to identify one class — we 
could simply identify the classes by the age  (when 
we say “people who are 20 years of age”, we are 
unambiguously identifying that subset of people)

● Still, we could pick one of those persons (any one), 
and we would still unambiguously identify the entire 
class by using that class representative)



  

Relationships

● Examples of Equivalence relations:
● A more mathematical example:  the numbers 

modulo m.
● The relation being:  two numbers are related 

(equivalent) if they have the same value modulo m.  
(that is, numbers that have the same remainder 
when dividing by m).

● This equivalence relation partitions the set of 
integer numbers into m equivalence classes.



  

Relationships

● Examples of Equivalence relations:
● For example, if m = 100, then two numbers are 

related if the last two digits are the same  
(assuming digits in decimal representation, of 
course)

● We observe that in this case, by picking a class 
representative (one of the numbers), we identify the 
entire equivalence class:
– The number 73 (in this context) automatically identifies 

the set {73 + 100 k | k  ∈ Z}



  

Relationships

● There is one example that we have seen and 
we have been using (quite a lot, actually!) in 
class  (in the previous few classes).

● Can you think of such example?  And explain 
why it constitutes an equivalence relation?



  

Relationships

● Typical operations for an equivalence relation:
● Are two given elements related?
● Iterate through all elements related to a particular 

element  (equivalently, iterate through all the 
elements of an equivalence class, as specified by 
any given class representative)



  

Relationships

● Weak ordering:
● The mathematical definition is somewhat 

tricky/involved (though it is quite neat!  I invite you 
to look it up on, say, Wikipedia — not today, though! 
Kudos to Wikipedia for their blackout today!)

● But the idea being that a weak ordering is a linear 
or total ordering of equivalence classes.



  

Relationships

● Weak ordering:
● The mathematical definition is somewhat 

tricky/involved (though it is quite neat!  I invite you 
to look it up on, say, Wikipedia — not today, though! 
Kudos to Wikipedia for their blackout today!)

● But the idea being that a weak ordering is a linear 
or total ordering of equivalence classes.

● An example being, ordering persons by age;  we 
can arrange the groups in a linear fashion.



  

Relationships

● Given a weak ordering, typical operations are 
the same as those for linear orderings and 
equivalence classes.

● However:
● The smallest and largest elements are not 

necessarily unique  (leading to the common notion 
that a smallest element is one such that no other 
element is smaller than it)

● Next or previous elements may be equivalent.



  

Relationships

● Adjacency relations:
● Adjacency relations can be defined in an abstract 

way as a relationship between the elements of a set 
where the only possible (though not necessary) 
constraints would be reflexivity and symmetry:
– No transitivity, no totality.



  

Relationships

● Typical examples are relationships given by 
some form of “connections”:
● x ~ y  if  x and y are friends  (presumably this is an 

example where the relation is symmetric)
– For Social networks systems, this seems like the most 

fundamental notion to consider!

● Physical adjacency is another obvious example 
(i.e., “being neighbour”)



  

Relationships

● Concrete examples of physical adjacency are:
● Intersections in a city:  streets represent the 

relationship between two intersections — i.e., two 
intersections are related (adjacent) if they are 
directly connected by a street.

● Circuit elements — points in a circuit are “adjacent” 
if there is a trace (a connection) between them.



  

Relationships

● Adjacency relations are typically represented by 
Graphs — elements are only aware of their 
neighbouring, or adjacent elements, without 
any global relationship being directly present.

(we'll see a lot of this later on during the 
course!)



  

Relationships

● Typical operations on a container aware of 
adjacency relations  (a graph):
● Are two elements adjacent?
● Iterate through all the elements adjacent to a given 

element.
● Given two elements x and y, is there a sequence of 

adjacent elements that connect x to y?
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