

Sequential Containers

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Sequential Containers

Standard reminder to set phones to
silent/vibrate mode, please!

Sequential Containers

● Today's class:
● We'll introduce sequential containers,

implementation strategies, and related operations.
● We'll investigate the two main strategies for these:

– Contiguous (block) storage — today (typical example:
arrays)

– Node-based storage — next class (typical example:
linked lists)

● We'll also look into stacks and queues (useful for
lab 1 next week!)

Sequential Containers

● Sequential containers are typically used for
linearly ordered data — makes sense; they
provide, precisely, a linear arrangement of the
elements.

● They may also be useful for weakly ordered
data, depending on what the constraints for
equivalent elements may be (i.e., it could be a
little more complicated than simply using a
sequential container).

Sequential Containers

● Also, they may be useful (again, depending on
the constraints in the particular situation) for
data with no ordering/relations at all — we
introduce the “artificial” linear ordering given by
the order in which the elements appear in the
sequential storage.

Sequential Containers

● Also, they may be useful (again, depending on
the constraints in the particular situation) for
data with no ordering/relations at all — we
introduce the “artificial” linear ordering given by
the order in which the elements appear in the
sequential storage.

● Notice that this makes sense given that this is
the simplest type of data structure, so it seems
reasonable to use it with the data does not
impose any requirements.

Sequential Containers

● Two main categories for the storage strategy:
● Contiguous storage (block based)
● Node (element) based

● Typical (simple) examples being arrays for
contiguous storage, and linked lists for node
based storage.
● We will, of course, see many other examples for

each of these categories, and several examples
where either strategy may be used (and useful).

Sequential Containers

● For contiguous storage (at least in C and C++),
we have two strategies:
● The simple (boring? :-)) one — built-in arrays
● Dynamic arrays (where the real fun is!)

Sequential Containers

● In this course, we won't care too much (or at all)
about built-in arrays — they're just the simple
(and limited) way to implement the simplest
possible types of data.

Sequential Containers

● In this course, we won't care too much (or at all)
about built-in arrays — they're just the simple
(and limited) way to implement the simplest
possible types of data.

(clipart courtesy of clipartof.com)

Sequential Containers

● For dynamic storage, we saw already a couple
of fundamental concepts in C++ that play a
role:
● Pointers (and in particular, the close relationship

between pointers and arrays — not the same thing,
though!!)

● Dynamic memory allocation

Sequential Containers

● There is a third notion that we haven't explicitly
seen so far (but you did see it indirectly during
Lab 0):
● Handling dynamic memory allocations through

classes.
● The fancy name for this in the C++ community is:

RAII (Resource Acquisition Is Initialization)
● The idea being that initializing an object should

handle the acquisition of resources, and destroying
it should handle the release of such resources.

Sequential Containers

● RAII applies in general to all sorts of resources,
but we'll focus on dynamically allocated
memory as the only resource that we'll be
dealing with.

Sequential Containers

● Bottom line (extremely simplified):
● Constructor allocates memory (new or new [])
● Destructor releases memory (delete or delete[])

Sequential Containers

● For a more complete picture, we need to take
into account:
● Copy constructor (creating an object as a copy of

another — if we simply copy the values of the
pointers, we're in trouble; two objects pointing to
the same memory; one object will affect the other;
there will be double delete — two destructors
operating on the same memory)

● Assignment operator — assigning one object from
another (need to release and reallocate to copy the
data from the other object)

Sequential Containers

● More on these subtleties in the Lab material...

Sequential Containers

● Using a block of dynamically allocated memory
as an array (e.g., an array of ints) is straight-
forward:

int * array = new int[size];
// Now use array[index]
// Example to fill the array with -1's:

for (int i = 0; i < size; i++)
{
 array[i] = -1;
}

Sequential Containers

● Most likely, we'll want to “templatize” that code;
e.g., inside some template code parameterized
by typename Type:

Type * array = new Type[size];
// An important difference is that in this case,
// all elements are default-initialized (the
// default constructor is called for each of the
// size objects)

for (int i = 0; i < size; i++)
{
 array[i] = ?? ; // What do we put here??
}

Sequential Containers

● Some interesting things that can be done with
an array:
● Signed subscripts (as in, both positive and

negative subscripts)

Sequential Containers

● This is somewhat straightforward, given the
close relationship between arrays and pointers:
● Given a block of memory of, say, 21 elements, we

set up a pointer pointing to half that space (in this
example, pointing to the 11th element — element at
index 10, when we count starting at index 0)

Sequential Containers

● This is somewhat straightforward, given the
close relationship between arrays and pointers:
● Given a block of memory of, say, 21 elements, we

set up a pointer pointing to half that space (in this
example, pointing to the 11th element — element at
index 10, when we count starting at index 0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

array

Sequential Containers

● Given this configuration, what is array[0] ??
What is array[4] ?? What is array[−2] ??

● The trick is that array[index] is always done by
going index positions after where array is
pointing (that is, index is “added” to the pointer)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

array

Sequential Containers

● Some interesting things that can be done with
an array:
● Circular array, or circular buffer.

Sequential Containers

● Motivating example: Say that you want to keep
track of the average temperature of the last
week (as in, the most recent past 7 days — as
opposed to Monday to Sunday last week or
similar)
● We can set up an array of 7 elements, but then, at

each step (representing each day), we need to add
one more temperature, and we run out of space.

● Of course, now we don't need the temperature from
what just became “8 days ago”, so we discard it

Sequential Containers

● Except that ... Oops, we need to then move 6
elements backwards (overwriting the first one),
to then write the most recent value, and then
compute average temperature.

● Instead, we could work with the array in a
circular way, allowing the start to be at any
position:
● The positions of the other elements go sequentially

from the starting position, cycling back to position 0
when reaching the highest index.

Sequential Containers

● Example for a circular buffer of size 10:
● Normally, positions 0 to 9 will be like this:

● But might as well be something like this:

0 1 2 3 4 5 6 7 8 9

6 7 8 9 0 1 2 3 4 5

Sequential Containers

● The idea is similar to the way we handled
arrays accepting negative subscripts — the
difference being, the elements on the left are
not really negative subscripts, but the remaining
subscripts after the right-most subscript (5 in
this example) is exceeded.

6 7 8 9 0 1 2 3 4 5

Sequential Containers

● Another difference is that here, we do not keep
a pointer to the “start” of the array; instead, we
keep the “real subscript” of the element that will
be the “logical” 0 subscript.

● In the example below, start = 4.

6 7 8 9 0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9Real subscripts:

Sequential Containers

● How do we obtain elements 3, or 4??
(this one is easy — just look at the diagram
below)

● How do we obtain, say, element 7, or 8??

6 7 8 9 0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9Real subscripts:

Sequential Containers

● Dynamic (resizable) arrays:
● We've seen examples of resizing arrays

– With functions that resize an array given as parameter,
there was the detail that the pointer needs to be passed
by reference (since the pointer itself needs to be
modified — and not simply the values pointed at)

– If the array is encapsulated in a class, then the pointer
would be a data member, and this detail would not apply:
we simply have a resize() method that has direct access
to the pointer, since it is a data member.

Sequential Containers

● We often want the array to automatically grow
as needed.

● For example, a push_back() function (or
method) would add one element at the end of
the array, including the requirement that if we
run out of space in the array, then we resize to
increase the size and accommodate the added
element.

Sequential Containers

● Question: what is the cost (in terms of the run
time of the operation) of push_back() when a
reallocation is needed?

Sequential Containers

● Question: what is the cost (in terms of the run
time of the operation) of push_back() when a
reallocation is needed?

● Follow-up question: what happens if we resize
only to accommodate the added element (i.e.,
if we resize to size+1) ?
● In particular, what is the cost of adding n elements?

Sequential Containers

● Hmm... Let's think about this:
● Maybe we can do things such that, on average, the

run time is low — all we need to do is distribute the
cost of appending (which is necessarily Ω(n))
among several appends.

● That is, if we resize to more than size+1, then this
append had cost Θ(size), but then the next several
apends will have cost Θ(1) since they won't require
resizing.

Sequential Containers

● How do we make this work? If we always
resize to, say, the current size + 10, or + 20,
then, as the size grows, then the advantage
becomes negligible and on average each
append still takes linear time.

Sequential Containers

● How do we make this work? If we always
resize to, say, the current size + 10, or + 20,
then, as the size grows, then the advantage
becomes negligible and on average each
append still takes linear time.

● Any ideas?

Sequential Containers

● How do we make this work? If we always
resize to, say, the current size + 10, or + 20,
then, as the size grows, then the advantage
becomes negligible and on average each
append still takes linear time.

● Any ideas?

(we'll definitely discuss one in class!)

Sequential Containers

● Next, we'll look at stacks and queues.

Sequential Containers

● Next, we'll look at stacks and queues.
● These are still sequential containers, but with

additional constraints in the temporal patterns
of access.

● In particular, the order in which elements are
inserted and removed.

Sequential Containers

● A queue represents the first-in-first-out pattern
(useful for example to implement “first-come,
first-served” policies).

● You could implement it as a regular sequential
container (either an array or a linked list) where
you insert elements on one end, and extract
them from the other end (they come out in the
same order as they went in)

Sequential Containers

● A queue represents the first-in-first-out pattern
(useful for example to implement “first-come,
first-served” policies).

● You could implement it as a regular sequential
container (either an array or a linked list) where
you insert elements on one end, and extract
them from the other end (they come out in the
same order as they went in)
● With a linked list, this is trivial... But how would you

accomplish this with an array? (would we want to?)

Sequential Containers

● Operations on a queue:
● enqueue (insert an element to the queue)
● dequeue (extract an element — the “next one in

line”)

Sequential Containers

● A stack represents the last-in-first-out pattern.
● Literally, like a stack of books or any objects:

you stack things up, and the first one that you
stacked will be buried under the rest, so it
would be the last one the come out.

● The operations on the stack are:
● push (insert an element at the top of the stack)
● pop (remove an element off the top of the stack)

Sequential Containers

● Implementation of a stack in terms of any
sequential container (array or linked list) is also
straightforward:
● The difference is, you do both insertions and

removals on the same end of the sequence.
● For example, with a linked list, you either do

push_front and pop_front, or push_back and
pop_back — should be easy to visualize that the
order of extractions will be the reverse of the order
of insertions!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

