

Sequential Containers – Cont'd

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Sequential Containers

Standard reminder to set phones to
silent/vibrate mode, please!

Sequential Containers

● Today's class:
● We'll complete our discussion on sequential

containers
● We'll briefly talk about linked lists
● Look into the notion of iterators (an example of a

Design Pattern)

Sequential Containers

● Linked lists:
● As mentioned, one of the simplest examples of

Node-based containers.
● You're already familiar with the two basic types:

singly-linked lists and doubly-linked lists.

Sequential Containers

● Linked lists:
● How do they compare to arrays?

– Storage: less efficient; there is per-element overhead (the
link to the next, or links to next and previous, elements)

– Access: Depending on the type of access, each one has its
own advantages:

● Insertion of elements is more efficient for linked lists (Θ(1) vs. Θ(n)
for arrays — average Θ(1) if using exponential growth; but still,
some insertions are expensive, and this may be a problem for some
types of applications; plus, that's only appends!)

● Removal of elements — Θ(1) for linked lists; for arrays, it is Θ(1) if
removing the last element; removal at arbitrary positions takes Θ(n)

Sequential Containers

● Linked lists:
● How do they compare to arrays?

– Access (cont'd):
● Random access to elements (i.e., subscripted access, as

opposed to sequential access): arrays win here, of course —
Θ(1) vs. Θ(n) for linked lists.

Sequential Containers

● Linked lists:
● In terms of implementation details, there are a

couple of often used features (could even think of
them as “tricks”):
– Circular list
– With dummy or sentinel element or node.

Sequential Containers

● Circular Linked lists:
● Instead of pointing to NULL to designate the end,

the last node points back to the first one.

head

Sequential Containers

● Circular Linked lists:
● This can simplify the coding of some operations, in

that there are fewer exceptional cases to handle
(such as insertion at the end), since there is always
a next element.

● Can also simplify client code when representing
something that is “closed” or circular by nature; for
example, using a linked list of points (vertices) to
represent closed polygons (after the last vertex, the
sequence “closes” going back to the first one).

Sequential Containers

● Circular Linked lists:
● For doubly-linked lists, of course the first node's

previous will point to the last one (instead of
pointing to NULL)

head

Sequential Containers

● Dummy or Sentinel node:
● A common trick to simplify the implementation is to

add an extra (“dummy”) node at the beginning
and/or another one at the end (the same one if the
list is circular).

● Thus, an empty list does have one element,
avoiding the need for special code to handle
insertions on empty lists.

Sequential Containers

● Dummy or Sentinel node:
● Not only a matter of simplifying the code — in terms

of efficiency, we get an important advantage:
If there is a special case that needs to be handled, we
have to always check for that special case — even if it
happens very rarely.

This is pretty bad, since we have an extra cost in every
single operation, even if only once in a while the condition
applies.

Sequential Containers

● Dummy or Sentinel node:
● A very common approach is implementing lists as

circular lists with dummy or sentinel node

head

Sequential Containers

● Dummy or Sentinel node:
● A neat detail is that this is what an empty list looks

like:

● That is, inserting an element on an empty list or

removing an element causing the list to become
empty are operations identical to their non-empty
counterpart (i.e., require no special code to handle)

head

Sequential Containers

● Another neat trick that can be done with a
sentinel node:
● When searching for a value, our loop has to check

for the value and also whether the pointer is NULL
(if the value is not found, we will reach the end of
the list)
for (Node * p = list.head();
 p != NULL && p->retrieve() != value;
 p = p->next())

Sequential Containers

● Notice that this is a per-pass overhead (if we
have 1000 nodes, then 1000 times we check
for NULL, even though only one of them will be
NULL)

● If we have a sentinel node, we can write the
value we're searching, and that way we know
that it will be found — no need to check for
NULL at every step (at the end, check if we're
pointing to the sentinel, which would mean that
the value was not found in the list)

Sequential Containers

● Both queues and stacks can be conveniently
implemented in terms of a linked list:
● For queues: enqueue is implemented as

push_front and dequeue is implemented as
pop_back (or vice-versa)

● For stacks: push is implemented as push_xxx and
pop is implemented as pop_xxx (where xxx can be
either front or back — the important detail is that it
be the same for both operations)

Sequential Containers

● Next, we'll look into the notion of iterators

Sequential Containers

● Next, we'll look into the notion of iterators

A very relevant quote, by David Wheeler (first
person to ever be awarded a PhD in Computer
Science, back in 1951):

Every problem in computer science can be
solved by an extra level of indirection... Except
for

Sequential Containers

● Next, we'll look into the notion of iterators

A very relevant quote, by David Wheeler (first
person to ever be awarded a PhD in Computer
Science, back in 1951):

Every problem in computer science can be
solved by an extra level of indirection... Except
for the problem of too many levels of indirection

– David Wheeler

Sequential Containers

● Question: since both arrays and linked lists are
sequential containers, shouldn't we be able to
sequentially access the element in the exact
same way?
● «Why would we want to do that ?», one could ask.
● What happens if we choose, say, arrays since there

are few insertions or removals, but then the
requirements are changed (or re-evaluated) and
we decide that a linked list does a better job?

Sequential Containers

● Question: since both arrays and linked lists are
sequential containers, shouldn't we be able to
sequentially access the element in the exact
same way?
● «Why would we want to do that ?», one could ask.
● What happens if we choose, say, arrays since there

are few insertions or removals, but then the
requirements are changed (or re-evaluated) and
we decide that a linked list does a better job?
– We'd have to re-write all code that accesses the

elements in the sequence.

Sequential Containers

● Another question (completely independent and
different question, yet surprisingly pointing to a
common answer!):

● What about the way that we access elements in
a linked list? Isn't class List (whatever its
name) supposed to encapsulate and hide
implementation details from client code?
● One of the reasons for this is that if you change

your implementation details, client code does not
need to be changed everywhere a list is used.

Sequential Containers

● But also, we'd like, as much as possible, to
protect the internals of our list class from
mistakes made by outsiders.

● For example, we have a method head() that
returns a Node * pointing to the first element (or
first after the sentinel, if applicable)
● What if client code thinks they can do arithmetic

with that pointer? list.head()++ or something like
that.

Sequential Containers

● What if client code does something like this?

Node * head = list.head();
// ...
delete head;

● There's nothing the class can do to prevent this
if it hands out a pointer to a node directly.

Sequential Containers

● What if instead of returning a Node * directly,
that Node * was encapsulated in a class?

● A class that only supports retrieval of the value
and advancing to the next element? (or moving
backward as well, if a doubly-linked list)

Sequential Containers

● This is, roughly speaking, the main idea behind
the iterator design pattern:
● It provides that extra level of indirection (a “middle-

man”) that addresses these two problems that we
mentioned.

● Client code does not know about Node; it knows
about List_iterator (or just Iterator), and it knows
that with an iterator, it can retrieve values, advance
to the next element, and check whether we're at the
end of the list (to stop the loop that iterates over the
sequence of values).

Sequential Containers

● The interesting aspect is that there could be a
class Iterator, with exact functionality, for
arrays.
● If we only need sequential access, and not random

access (i.e., subscripted), we could use the exact
same code to iterate over the elements in an array
or in a linked list.

Sequential Containers

● The internals of the implementations of these
two iterator classes can be as radically different
as needed

● As long as they both provide the same
interface, and of course, as long as they both
provide the correct functionality, client code will
be happy!

Sequential Containers

● An example (extremely simplified) for linked list:
class List_iterator
{
public:
 List_iterator (Node<Type> * node)
 : d_node(node) {}
 void advance();
 Type retrieve() const;
 // ...
private:
 Node<Type> * d_node;
};

Sequential Containers

● Methods implementation:
void List_iterator<Type>::advance()
{
 d_node = d_node->next();
}

Type List_iterator<Type>::retrieve() const
{
 return d_node->retrieve();
}

Sequential Containers

● Now (also extremely simplified) for array:
class Array_iterator
{
public:
 Array_iterator (Array<Type> & array,
 int index)
 : d_array(array), d_index(index) {}
 void advance();
 Type retrieve() const;
private:
 Array<Type> d_array;
 int d_index;
};

Sequential Containers

● Methods implementation:
void Array_iterator<Type>::advance()
{
 ++d_index;
}

Type Array_iterator<Type>::retrieve() const
{
 return d_array[d_index];
}

Sequential Containers

● Despite the rather important difference in the
internals for both iterators, with either one,
client code does the same to iterate over the
sequence (since the interface is the same):

for (XXX_iterator i = container.begin();
 !i.at_end();
 i.advance())
{
 cout << i.retrieve() << endl;
}

Sequential Containers

● In the example, XXX would be List or Array,
depending on which one we use.

● container is either the linked list or the array for
which we want to iterate over its elements (in
sequence)

● Presumably, we add the requirement that both
linked list an array must provide a method
begin(), that returns an iterator referring to the
first element.

Sequential Containers

● If you're curious and interested in knowing
more, you can check my tutorial on the
Standard Template Library (STL) — in the
course web page, check the C++ option in the
menu on the left (this is completely optional!).

● STL iterators are different with respect to the
ones presented here, but the idea and their
purpose is essentially identical.

● Again: completely optional (not part of the
course material)

Summary

● During today's class, we discussed:
● Linked lists and some implementation tricks:

– Circular linked lists
– Dummy or sentinel node

● Using a linked list to implement queues or stacks
● Iterator as a nice design pattern addressing at least

two issues with sequential containers (one of the
issues being specific to linked lists)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

