

Hash Tables

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Hash Tables

Standard reminder to set phones to
silent/vibrate mode, please!

Hash Tables

● Today's class:
● Introduce/discuss storage of unrelated/unordered

data
– Discuss the idea of indexing

● Introduce the idea of hash functions
● Introduce the use of hash functions for efficient

storage of sets or associative containers.
● Discuss chained hash tables

Hash Tables

● Let's start with an example:
● Say that we need to store data about the students

(for example, for evaluation purposes, automating
grading, etc.)

● Each student is identified by their student ID
● Then, we need to store, for each student, a bunch

of data (list of assignments/exams/etc. with grades
and comments/feedback that the students can
review)

Hash Tables

● Now, the user enters a student ID (or a student
logs in, which implicitly supplies a student ID for
the system to process), and we need to look up
all the information.
● Question: how do we do this efficiently?

Hash Tables

● Now, the user enters a student ID (or a student
logs in, which implicitly supplies a student ID for
the system to process), and we need to look up
all the information.
● Question: how do we do this efficiently?
● Answer 1 (incorrect): we have a list of students,

and we linearly scan that list until finding the given
student ID.

(why is this an incorrect answer?)

Hash Tables

● Now, the user enters a student ID (or a student
logs in, which implicitly supplies a student ID for
the system to process), and we need to look up
all the information.
● Question: how do we do this efficiently?
● Answer 2 (better): we could store the student IDs in

order, so that we don't scan linearly, but instead do
binary search (logarithmic time is dramatically
better than linear!)

Hash Tables

● Now, the user enters a student ID (or a student
logs in, which implicitly supplies a student ID for
the system to process), and we need to look up
all the information.
● Question: how do we do this efficiently?
● Answer 2 (better): we could store the student IDs in

order, so that we don't scan linearly, but instead do
binary search (logarithmic time is dramatically
better than linear!)

Hash Tables

● Follow-up question:
● What is dramatically better than logarithmic time?

Hash Tables

● Follow-up question:
● What is dramatically better than logarithmic time?

● Ok (I assume that you did answer that question! :-)),
so how can we obtain constant time for this look-up
operation?

Hash Tables

● Follow-up question:
● What is dramatically better than logarithmic time?

● Ok (I assume that you did answer that question! :-)),
so how can we obtain constant time for this look-up
operation?

● Hint: What data structure have we seen that offers
constant time access to a given element?

Hash Tables

● And again, assuming that you answered that
question....

● Follow-up question: Does it make sense to
even consider using an array where the student
ID is the subscript??
● Hint: Look at your student ID ... That's 8 digits!!

Hash Tables

● And again, assuming that you answered that
question....

● Follow-up question: Does it make sense to
even consider using an array where the student
ID is the subscript??
● Hint: Look at your student ID ... That's 8 digits!!
● We'd need an array of 100 million elements!! (and

each student's data is perhaps a few kilobytes, so
we're talking a few hundred GIGAbytes for this!!)

Hash Tables

● Sounds a bit excessive, given that we're trying
to store the data of, say, 200 or 300 students (in
general — in your case, it would be just a bit
above 100)

Hash Tables

● Sounds a bit excessive, given that we're trying
to store the data of, say, 200 or 300 students (in
general — in your case, it would be just a bit
above 100)

● Any ideas ... ?

Hash Tables

● Sounds a bit excessive, given that we're trying
to store the data of, say, 200 or 300 students (in
general — in your case, it would be just a bit
above 100)

● Any ideas ... ?

Unfortunately, I can't stop and wait for your
answer, as the answer to this is immediately
necessary to continue :-)

Hash Tables

● How about, we don't use the whole student ID
as the subscript, but just several of its digits?

● We'd certainly address the issue of the
(ridiculously) excessive amount of storage
required!

● But...

Hash Tables

● Do we run into any problems?
● Let's see, say that we decide to use only two

digits of the student ID — that way, we only
need an array of 100 elements.
● So, which two digits?
● The first two digits?

– Hint: My student ID's first two digits are 20 Are yours
by any chance 20 ???

Hash Tables

● How about the last two digits?
● Definitely better, but not good enough (not by a

long shot!)
● It's better because in a group of students selected

randomly, the last two digits are more or less
random(ish), so we have better chances that each
student gets a unique subscript for the array.

● However, the array only has 100 elements, and you
guys are 110+, so there will necessarily be more
than two students with the same last two digits in
their student IDs.

Hash Tables

● How about the last THREE digits, instead of
just two?
● Now, we have 1000 positions for the array, so each

student will get a unique subscript in that array ...

Hash Tables

● How about the last THREE digits, instead of
just two?
● Now, we have 1000 positions for the array, so each

student will get a unique subscript in that array ...

Right...?

Hash Tables

● How about the last THREE digits, instead of
just two?
● Now, we have 1000 positions for the array, so each

student will get a unique subscript in that array ...

Right...?
● Most definitely NO !! We have much better

chances, but we do NOT have the guarantee that
no two students will have the same last three digits.
(in fact, we'll talk about the birthday paradox!)

Hash Tables

● Putting aside (just for a minute) this detail, do
notice that we're talking about a trade-off here:
● We increase the number of digits, and we improve

our chances that the data structure will work.
● However, we increase the amount of storage

required, and the amount being “wasted” (in our
example, we now need 1000 elements, to store a
little over 100 students' data — not too efficient!)

Hash Tables

● However, this is the idea of Hash tables.
● In general, what we do is:

● Take the data that we need to store (more
specifically, the identifier, or “index” of the data that
we need to store — in our case, the student ID as
the identifier for a student's data) and transform it to
a smaller and fixed size

● Use that transformed data as the subscript in an
array.

Hash Tables

● This transformation is called hashing, and it is
done through a hash function.

● Two important aspects about this hash function:
● It is computed in constant time (in general, it is a

single expression; worst-case, a fixed number of
iterations doing some fixed number of calculations
at each round)

● It is definitely not an injective function (hopefully
you remember this from math? f(x) = x³ is an
injective function; f(x) = x² or sin(x) are not)

Hash Tables

● BTW ... Why can't this hash function be
injective?

Hash Tables

● BTW ... Why can't this hash function be
injective?

● And also, if it's not injective, meaning that
different data (in our case, different student IDs)
will produce the same hash value (this is known
as collisions), then how can we make the hash
table work?

Hash Tables

● An analogy:
● Suppose we have a workplace with 50 employees,

and we have mailboxes.
● We could have just 26 mailboxes, one for each

letter of the alphabet, and then, whatever
correspondence for one of the employees will be
placed in the mailbox with the first letter of their last
name (for example, correspondence to me,
Moreno, will be placed in the M mailbox)

Hash Tables

● Will this scheme work? Will I be able to find my
correspondence?

● Notice a problem:
● In the mailbox, my mail will be mixed with that of

Anne Meyers, Peter Mathews, and Jane Martin.

Hash Tables

● Will this scheme work? Will I be able to find my
correspondence?

● Notice a problem:
● In the mailbox, my mail will be mixed with that of

Anne Meyers, Peter Mathews, and Jane Martin.
– Is this really a problem??

Hash Tables

● Will this scheme work? Will I be able to find my
correspondence?

● Notice a problem:
● In the mailbox, my mail will be mixed with that of

Anne Meyers, Peter Mathews, and Jane Martin.
– Is this really a problem??

● Notice that it would definitely be a problem if the
mail was identified just by the M, and not by my
name.

Hash Tables

● Coming back to the issue of storing student's
data indexed by student ID: the analogy here is
that if we just take the last three digits of the
student ID and just store the data of the student
at that position, then things will not work:
● We'll need to store several students' data at the

same position (analogy with “in the same mailbox”);
but if we just leave it as student 314, then we won't
know if it is the data of student 20111314 or the
data of student 201222314.

Hash Tables

● As long as we store the student's data at
location 314, but then, as part of the data, we
store the complete student ID, then we will be
able to locate the data of student 20111314;
even if the data of student 20222314 is also
stored (in the same location).

Hash Tables

● BTW ... How do we store several students'
data in the same location of the array?? (same
subscript, therefore it is just one location).

● I will leave this one for you to think about it.

Hash Tables

● Next class, we'll take a look at two strategies to
deal with collisions:
● Chained hashing
● Open addressing

– Linear probing
– Double hashing

● We'll also take a look at how to compute good
hash functions (well, better — and more
general — than just taking the last three digits
of a student ID)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

