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Hash Tables

● Last time we introduced the idea behind Hash 
Tables, and discussed hash functions and the 
issue of collisions.

● Today, we'll:
● Expand on the issue of collisions and see why this 

is not a problem (or in any case, why we can easily 
deal with it)

● Talk about better and more general hash functions



  

Hash Tables

● Thinking big picture from what we saw last 
time... 

● What could be a good use for these hash 
tables?  (i.e., what type of data or data sets 
could we store in a hash table?)



  

Hash Tables

● Thinking big picture from what we saw last 
time... 

● What could be a good use for these hash 
tables?  (i.e., what type of data or data sets 
could we store in a hash table?)

● Two main types:
● Storing a set (in the strict mathematical sense;  an 

unordered collection of distinct, unrelated elements)
● An associative container



  

Hash Tables

● Thinking big picture ... 
● For a set, we would compute the hash of the 

values being stored, and we would then store 
the values at the position (usually referred to as 
bin) given by their hash.
● Operations on this hash table:

– check whether a given value is in the set or not.
– Iterate over all values in the set  (in any arbitrary order;  

after all, in a set, order plays no role — the actual 
collection of elements is what defines it).



  

Hash Tables

● Thinking big picture ... 
● Associative containers:  you could think of them 

as an array where the subscript is an arbitrary 
data type.

● In this case, the idea is that a given subscript or 
index, or more formally, a given key will be 
associated with a given value, and you can 
access this value by its key.



  

Hash Tables

● Thinking big picture ... 
● For associative containers, then, we would 

compute the hash of the key, and then, in the 
bin given by the hash, we store the key along 
with the value.



  

Hash Tables

● Thinking big picture ... 
● For associative containers, then, we would 

compute the hash of the key, and then, in the 
bin given by the hash, we store the key along 
with the value.
● Operations on this associative container:

– Given a key, look up (i.e., retrieve) the associated value 
(if key is found)

– Iterate over all pairs (key,value)



  

Hash Tables

● Thinking big picture ... 
● In our example, the values would be the 

collection of student's data, and the key would 
be the student ID.
● The “associative” container in this case associates 

student IDs with the corresponding student's data.



  

Hash Tables

● So, we had from last time (maybe) the pending 
question of how to deal with collisions.
● That is, how to store things when several different 

elements produce the same hash?



  

Hash Tables

● So, we had from last time (maybe) the pending 
question of how to deal with collisions.
● That is, how to store things when several different 

elements produce the same hash?

● The simplest method is known as chained hash 
or chained hashing.
● It is the most immediate solution that would come to 

mind: at each bin (each location of the array), store 
a linked list (or a dynamic array) of elements.



  

Hash Tables

● We can either make it explicitly an array of 
linked lists:

Array< Single_list<Student> > students_data;

● Or we could implicitly make a linked list as part 
of our hash table:

Array< Node<Student> *> students_data;



  

Hash Tables

● This goes quite well with our analogy of the 
mailboxes — each location in the array is not 
one element, but one “box” (one container or, 
well, one bin) where several elements go.



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Hash table initially empty:

0     1      2     3     4     5     6     7     8     9



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Insert 27:

0     1      2     3     4     5     6     7     8     9



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Insert 27:

0     1      2     3     4     5     6     7     8     9

27



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Now insert 61:

0     1      2     3     4     5     6     7     8     9

27



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Now insert 61:

0     1      2     3     4     5     6     7     8     9

61 27



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Now insert 35:

0     1      2     3     4     5     6     7     8     9

61 27



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Now insert 35:

0     1      2     3     4     5     6     7     8     9

61 2735



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Now insert 97:

0     1      2     3     4     5     6     7     8     9

61 2735



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● Now insert 97:

0     1      2     3     4     5     6     7     8     9

61 2735

97



  

Hash Tables

● Graphically, it would look something like this 
(example storing values from 0 to 99 with a 
hash function being h(n) = n % 10 — i.e., the 
right-most digit):
● How do we look up values?  (say, 35, 24, 97, 17?)

0     1      2     3     4     5     6     7     8     9

61 2735

97



  

Hash Tables

● However, this chained hashing technique is not 
the preferred approach, given the extra 
“housekeeping” required, and the storage 
overhead.



  

Hash Tables

● However, this chained hashing technique is not 
the preferred approach, given the extra 
“housekeeping” required, and the storage 
overhead.

● Before investigating alternative techniques, 
we'll address the issue of getting better hash 
functions.



  

Hash Tables

● We mentioned that this hash function can not 
be injective (1-to-1), since it maps a large range 
to a smaller one.
● Thus, there are not enough distinct values for the 

result as there are distinct values of the argument.



  

Hash Tables

● However, we want this function to behave as 
close as possible to an injective function.

● That is, we want that, probabilistically, the 
function tends to map different data to different 
hash values  (with high probability).
● That is, given two different values, we want to have 

a probability as high as possible to map those two 
different values to two different hash values.



  

Hash Tables

● However, we want this function to behave as 
close as possible to an injective function.

● That is, we want that, probabilistically, the 
function tends to map different data to different 
hash values  (with high probability).
● That is, given two different values, we want to have 

a probability as high as possible to map those two 
different values to two different hash values.

● This leads to a low (as low as possible, anyway) 
probability of collisions.



  

Hash Tables

● BTW ...  If we're handling collisions that nicely 
and that easily, why would we want to minimize 
the rate of collisions?

● If anything, it would be worth guaranteeing no 
collisions, since we would get rid of the need for 
a mechanism to deal with collisions.

● But since we need to put that mechanism 
(since collisions can happen), then one collision 
or many collisions should be the same ... (yes?)



  

Hash Tables

● Hopefully you noticed that the answer is NO 
(emphatically no!)
● The key detail being:  lots of collisions means that it 

takes longer to find the value!  (the time it takes to 
find a value in a bin is proportional to the number of 
elements in that bin)



  

Hash Tables

● Another condition for the hash function is that it 
must be efficiently computable.
● We not only want it to run in constant time;  we also 

want it to run fast !!



  

Hash Tables

● Another condition for the hash function is that it 
must be efficiently computable.
● We not only want it to run in constant time;  we also 

want it to run fast !!
– Huh??  Isn't that the same??



  

Hash Tables

● Another condition for the hash function is that it 
must be efficiently computable.
● We not only want it to run in constant time;  we also 

want it to run fast !!
– Huh??  Isn't that the same??

 

– Not really — constant time means asymptotically faster 
than any other class;  but if the proportionality constant is 
high, we're not in good shape

● In other words, we want constant time with a proportionality 
constant as low as possible!



  

Hash Tables

● The simplest hash function (i.e., one that meets 
the minimal requirements to a reasonable 
extent) is what we've used so far, using 
modulo:

        int hash (int n)
        {
            return n % m;
        } 



  

Hash Tables

● However, this function only maps to “random” 
evenly distributed hash values if the input 
values are random  (or at least random-ish)
● Examples:

– We already discussed the situation with prices; if we're 
using modulo 10 to obtain the hash of a price, the value 9 
will show up extremely often.

– With e-mail addresses — if we keep the last few bits of 
the binary (ASCII) representation of the last character, 
we're going to obtain the bits corresponding to m (.com) 
and those corresponding to a (.ca) very often.



  

Hash Tables

● So, the idea is that we want to scramble the 
data (including all bits of the data) in a way that 
we remove any obvious pattern, making the 
output look random(ish) regardless of whether 
the input is truly random or truly patternless.



  

Hash Tables

● So, the idea is that we want to scramble the 
data (including all bits of the data) in a way that 
we remove any obvious pattern, making the 
output look random(ish) regardless of whether 
the input is truly random or truly patternless.

● This property is known as the avalanche effect:
● We want a minor change in the input data to have a 

major effect on the output  (ideally, producing a 
hash that looks completely unrelated to the one for 
the similar data)



  

Hash Tables

● A true avalanche effect is not only difficult to 
design, but also very hard to achieve without 
sacrificing efficiency  (it would typically require 
a loop, applying some formula several times 
over, etc. etc.) 

● So, we're typically happy with a moderate 
avalanche effect, in which at least the hash 
values are spread out through the range, even 
for close or related inputs.



  

Hash Tables

● One of the simple operations that accomplishes 
this is multiplication by a number (preferably 
prime) that is large enough to produce overflow 
for most input values.



  

Hash Tables

● One of the simple operations that accomplishes 
this is multiplication by a number (preferably 
prime) that is large enough to produce overflow 
for most input values.

● So, the following would be a better hash 
function for an int value:

    int hash (int n)
    {
        return (n * 581869333) % m;
    } 



  

Hash Tables

● Several caveats:
● Signed arithmetic is not particularly friendly to 

modular arithmetic.  So, often enough, we prefer to 
work with unsigned int data types for the hash 
value and the intermediate calculations.
 

● Modular arithmetic (modulo operations) are not as 
fast as we would like — they involve a division.
– An analogy:  what is 7315 modulo 100 ?  (easy — right?)



  

Hash Tables

● Several caveats:
● Signed arithmetic is not particularly friendly to 

modular arithmetic.  So, often enough, we prefer to 
work with unsigned int data types for the hash 
value and the intermediate calculations.
 

● Modular arithmetic (modulo operations) are not as 
fast as we would like — they involve a division.
– An analogy:  what is 7315 modulo 100 ?  (easy — right?)
– What is 7315 modulo 87 ?  (in the spirit of fairness, try to 

do this one with paper and pencil — i.e., without a 
calculator;  after all, you didn't need it for the first one!)



  

Hash Tables

● Now, the operation modulo 100 was particularly 
easy for us because our brains work with 
numbers in base 10, and taking the remainder 
of a division by a power of 10 is trivial!  (we 
don't need to do a division at all — we don't 
need to do any arithmetic at all!)



  

Hash Tables

● Now, the operation modulo 100 was particularly 
easy for us because our brains work with 
numbers in base 10, and taking the remainder 
of a division by a power of 10 is trivial!  (we 
don't need to do a division at all — we don't 
need to do any arithmetic at all!)

● The important detail is that it's not the number 
10 (ten) that has anything special — it is the 
fact that we're dividing by a power of the base!! 
(in our case, 10)



  

Hash Tables

● So, if for our brains, multiplying, dividing, and 
taking remainders by powers of 10 is trivial and 
efficient, what do we think would be trivial and 
efficient for a computer to do?



  

Hash Tables

● So, if for our brains, multiplying, dividing, and 
taking remainders by powers of 10 is trivial and 
efficient, what do we think would be trivial and 
efficient for a computer to do?
 

● Computers work in base 2, so multiplication, 
division, and modulo powers of two are 
particularly easy operations



  

Hash Tables

● For the same reason that multiplying in decimal 
times, say, 10³ means adding three zeros to the 
right, and dividing by 10³ means chopping off 
the three right-most digits, we have that:

● In binary, multiplying times 8 (2³) means adding 
three zeros to the right, and dividing by 8 
means chopping off the three least-significant 
bits
● Of course, this applies in general for 2n.



  

Hash Tables

● Question:  how do we add three (or n) zeros to 
the right?



  

Hash Tables

● Question:  how do we add three (or n) zeros to 
the right?
● If we keep the bits aligned, we notice that this is the 

same as shifting the bits three (or n) positions to the 
left, filling with zeros:

        0001011101



  

Hash Tables

● Question:  how do we add three (or n) zeros to 
the right?
● If we keep the bits aligned, we notice that this is the 

same as shifting the bits three (or n) positions to the 
left, filling with zeros:

        0001011101
 

        1011101000



  

Hash Tables

● Question:  how do we add three (or n) zeros to 
the right?
● If we keep the bits aligned, we notice that this is the 

same as shifting the bits three (or n) positions to the 
left, filling with zeros:

        0001011101
 

        1011101000
● In C++, we do this with the << operator:

    x = x << 3;   // or x <<= 3;



  

Hash Tables

● Perhaps more interesting is:  what is, in binary, 
the result of a number modulo, say, 2³ ?
● For example, 1001101 modulo 2³



  

Hash Tables

● Perhaps more interesting is:  what is, in binary, 
the result of a number modulo, say, 2³ ?
● For example, 1001101 modulo 2³
● Ok, so it is 101 (the three right-most bits) — for the 

exact same reason that 73215 modulo 10³ is 215 
(the three right-most digits)



  

Hash Tables

● Follow-up question:  How do we extract the 
three (or in general, the n, for a given n) right-
most (least-significant) bits in C++? 



  

Hash Tables

● Follow-up question:  How do we extract the 
three (or in general, the n, for a given n) right-
most (least-significant) bits in C++?
● You recall AND operations, right?

0 AND 0 = 0           1 AND 0 = 0
0 AND 1 = 0           1 AND 1 = 1



  

Hash Tables

● Follow-up question:  How do we extract the 
three (or in general, the n, for a given n) right-
most (least-significant) bits in C++?
● You recall AND operations, right?

0 AND 0 = 0           1 AND 0 = 0
0 AND 1 = 0           1 AND 1 = 1

Conclusion:  0 AND x is 0;   1 AND x is x
                     where x is a value 0 or 1 (a single bit)



  

Hash Tables

● In C++, we have the bitwise and operator, the &



  

Hash Tables

● In C++, we have the bitwise and operator, the &

(and you thought that using that symbol for 
address-of and for references and pass-by-
reference was confusing... HA!!  :-) )



  

Hash Tables

● In C++, we have the bitwise and operator, the &

So, if we have a variable x with some value, 
and a variable mask with a “bit mask” — zeros 
where we want to “mask out” those bits and 
ones where we want to let those bits through, 
then we do:
    x = x & mask;   // or  x &= mask;

to clear the bits in x where mask has zeros.



  

Hash Tables

● Example:
    unsigned int x    = 0xA5B7;
    unsigned int mask = 0xFF;  // eight ones

    x &= mask;
        // now, x contains 0xB7

x:               1010 0101 1011 0111
mask:        0000 0000 1111 1111
x & mask:  0000 0000 1011 0111



  

Hash Tables

● So, how do we easily obtain the mask with the 
right amount of ones in the least-significant 
bits?
● Hopefully we remember, from assignment 1  

(actually, hopefully you remember this from your 
Digital Circuits course!) that n ones in binary is the 
value 2n – 1  (2n is 1 followed by n zeros — if we 
subtract one, we get n ones)



  

Hash Tables

● And hopefully you remember from a few slides 
ago that multiplying times 2n is adding n zeros 
to the right.

● In particular, 2n, which is 1 × 2n , can be 
obtained by taking 1 and adding n zeros to the 
right — or equivalently, shift-left n positions!



  

Hash Tables

● Summarizing:  the “ultra efficient” way to obtain 
n ones in C++ is through the expression
(1 << n) − 1 

● And of course, the “ultra efficient” way to obtain 
a value (say, the variable x) modulo 2n is:

    x &= (1 << n) − 1



  

Hash Tables

● If we have the size of our hash table in a 
variable size and we know that that size is 
guaranteed to be a power of 2, then the 
efficient way of taking a value (say, x) modulo 
size would simply be:
 

  x & (size − 1)  // equivalent to x % size
 

● Warning:  the above works ONLY if we know 
that size is a power of 2 !!!



  

Hash Tables

● So, you'll understand why in practice, we 
always want the size of hash tables to be a 
power of 2 !!
● As much as in our examples (which were intended 

for our brains to process, not for a computer!) we 
always wanted hash tables of size one hundred, or 
one thousand!



  

Hash Tables

● Now, how's this for a plot twist:
● In general, when doing these types of scrambling 

operations to values, in the resulting values, the bits 
from around the middle of the result tend to be 
more “random(ish)” than the least-significant ones.



  

Hash Tables

● Now, how's this for a plot twist:
● In general, when doing these types of scrambling 

operations to values, in the resulting values, the bits 
from around the middle of the result tend to be 
more “random(ish)” than the least-significant ones.

● So, let's take a look at this demo, from Professor 
Douglas Harder's slides  (taken directly for 
convenience, to avoid switching documents)



Mapping Down to 0, ..., M – 1

68

The Multiplicative Method

Suppose that the value m = 10 (M = 1024) and n = 42
const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

6.3.3



Mapping Down to 0, ..., M – 1

69

The Multiplicative Method

First calculate the shift
const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1



Mapping Down to 0, ..., M – 1

70

The Multiplicative Method

Next, n = 42 or 1010102 
const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1



Mapping Down to 0, ..., M – 1

71

The Multiplicative Method

Calculate Cn
const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1



Mapping Down to 0, ..., M – 1

72

The Multiplicative Method

Right shift this value 11 bits—equivalent to dividing by 211

const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1



Mapping Down to 0, ..., M – 1

73

The Multiplicative Method

Next, start with 1
const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1



Mapping Down to 0, ..., M – 1

74

The Multiplicative Method

Left shift 1 m = 10 bits yielding 210

const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1



Mapping Down to 0, ..., M – 1

75

The Multiplicative Method

Subtracting 1 yields m = 10 ones
const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1



Mapping Down to 0, ..., M – 1

76

The Multiplicative Method

Taken the bitwise to clear all but the last 10 bits
const unsigned int C = 581869333;  // some number

unsigned int hash_M( unsigned int n, unsigned int m ) {
    unsigned int shift = (32 – m)/2;
    return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1



  

Summary

● During this class, we discussed:
● Typical uses for hash tables (representing sets and 

associative containers)
● Chained hashing
● Good and efficient hash functions

– In particular, we looked at several tricks to improve 
efficiency, based on the binary nature of a computer's 
representation of numbers and arithmetic.
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