

Hash Tables (Cont'd)

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Hash Tables

● Last time we introduced the idea behind Hash
Tables, and discussed hash functions and the
issue of collisions.

● Today, we'll:
● Expand on the issue of collisions and see why this

is not a problem (or in any case, why we can easily
deal with it)

● Talk about better and more general hash functions

Hash Tables

● Thinking big picture from what we saw last
time...

● What could be a good use for these hash
tables? (i.e., what type of data or data sets
could we store in a hash table?)

Hash Tables

● Thinking big picture from what we saw last
time...

● What could be a good use for these hash
tables? (i.e., what type of data or data sets
could we store in a hash table?)

● Two main types:
● Storing a set (in the strict mathematical sense; an

unordered collection of distinct, unrelated elements)
● An associative container

Hash Tables

● Thinking big picture ...
● For a set, we would compute the hash of the

values being stored, and we would then store
the values at the position (usually referred to as
bin) given by their hash.
● Operations on this hash table:

– check whether a given value is in the set or not.
– Iterate over all values in the set (in any arbitrary order;

after all, in a set, order plays no role — the actual
collection of elements is what defines it).

Hash Tables

● Thinking big picture ...
● Associative containers: you could think of them

as an array where the subscript is an arbitrary
data type.

● In this case, the idea is that a given subscript or
index, or more formally, a given key will be
associated with a given value, and you can
access this value by its key.

Hash Tables

● Thinking big picture ...
● For associative containers, then, we would

compute the hash of the key, and then, in the
bin given by the hash, we store the key along
with the value.

Hash Tables

● Thinking big picture ...
● For associative containers, then, we would

compute the hash of the key, and then, in the
bin given by the hash, we store the key along
with the value.
● Operations on this associative container:

– Given a key, look up (i.e., retrieve) the associated value
(if key is found)

– Iterate over all pairs (key,value)

Hash Tables

● Thinking big picture ...
● In our example, the values would be the

collection of student's data, and the key would
be the student ID.
● The “associative” container in this case associates

student IDs with the corresponding student's data.

Hash Tables

● So, we had from last time (maybe) the pending
question of how to deal with collisions.
● That is, how to store things when several different

elements produce the same hash?

Hash Tables

● So, we had from last time (maybe) the pending
question of how to deal with collisions.
● That is, how to store things when several different

elements produce the same hash?

● The simplest method is known as chained hash
or chained hashing.
● It is the most immediate solution that would come to

mind: at each bin (each location of the array), store
a linked list (or a dynamic array) of elements.

Hash Tables

● We can either make it explicitly an array of
linked lists:

Array< Single_list<Student> > students_data;

● Or we could implicitly make a linked list as part
of our hash table:

Array< Node<Student> *> students_data;

Hash Tables

● This goes quite well with our analogy of the
mailboxes — each location in the array is not
one element, but one “box” (one container or,
well, one bin) where several elements go.

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Hash table initially empty:

0 1 2 3 4 5 6 7 8 9

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Insert 27:

0 1 2 3 4 5 6 7 8 9

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Insert 27:

0 1 2 3 4 5 6 7 8 9

27

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Now insert 61:

0 1 2 3 4 5 6 7 8 9

27

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Now insert 61:

0 1 2 3 4 5 6 7 8 9

61 27

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Now insert 35:

0 1 2 3 4 5 6 7 8 9

61 27

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Now insert 35:

0 1 2 3 4 5 6 7 8 9

61 2735

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Now insert 97:

0 1 2 3 4 5 6 7 8 9

61 2735

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● Now insert 97:

0 1 2 3 4 5 6 7 8 9

61 2735

97

Hash Tables

● Graphically, it would look something like this
(example storing values from 0 to 99 with a
hash function being h(n) = n % 10 — i.e., the
right-most digit):
● How do we look up values? (say, 35, 24, 97, 17?)

0 1 2 3 4 5 6 7 8 9

61 2735

97

Hash Tables

● However, this chained hashing technique is not
the preferred approach, given the extra
“housekeeping” required, and the storage
overhead.

Hash Tables

● However, this chained hashing technique is not
the preferred approach, given the extra
“housekeeping” required, and the storage
overhead.

● Before investigating alternative techniques,
we'll address the issue of getting better hash
functions.

Hash Tables

● We mentioned that this hash function can not
be injective (1-to-1), since it maps a large range
to a smaller one.
● Thus, there are not enough distinct values for the

result as there are distinct values of the argument.

Hash Tables

● However, we want this function to behave as
close as possible to an injective function.

● That is, we want that, probabilistically, the
function tends to map different data to different
hash values (with high probability).
● That is, given two different values, we want to have

a probability as high as possible to map those two
different values to two different hash values.

Hash Tables

● However, we want this function to behave as
close as possible to an injective function.

● That is, we want that, probabilistically, the
function tends to map different data to different
hash values (with high probability).
● That is, given two different values, we want to have

a probability as high as possible to map those two
different values to two different hash values.

● This leads to a low (as low as possible, anyway)
probability of collisions.

Hash Tables

● BTW ... If we're handling collisions that nicely
and that easily, why would we want to minimize
the rate of collisions?

● If anything, it would be worth guaranteeing no
collisions, since we would get rid of the need for
a mechanism to deal with collisions.

● But since we need to put that mechanism
(since collisions can happen), then one collision
or many collisions should be the same ... (yes?)

Hash Tables

● Hopefully you noticed that the answer is NO
(emphatically no!)
● The key detail being: lots of collisions means that it

takes longer to find the value! (the time it takes to
find a value in a bin is proportional to the number of
elements in that bin)

Hash Tables

● Another condition for the hash function is that it
must be efficiently computable.
● We not only want it to run in constant time; we also

want it to run fast !!

Hash Tables

● Another condition for the hash function is that it
must be efficiently computable.
● We not only want it to run in constant time; we also

want it to run fast !!
– Huh?? Isn't that the same??

Hash Tables

● Another condition for the hash function is that it
must be efficiently computable.
● We not only want it to run in constant time; we also

want it to run fast !!
– Huh?? Isn't that the same??

– Not really — constant time means asymptotically faster
than any other class; but if the proportionality constant is
high, we're not in good shape

● In other words, we want constant time with a proportionality
constant as low as possible!

Hash Tables

● The simplest hash function (i.e., one that meets
the minimal requirements to a reasonable
extent) is what we've used so far, using
modulo:

 int hash (int n)
 {
 return n % m;
 }

Hash Tables

● However, this function only maps to “random”
evenly distributed hash values if the input
values are random (or at least random-ish)
● Examples:

– We already discussed the situation with prices; if we're
using modulo 10 to obtain the hash of a price, the value 9
will show up extremely often.

– With e-mail addresses — if we keep the last few bits of
the binary (ASCII) representation of the last character,
we're going to obtain the bits corresponding to m (.com)
and those corresponding to a (.ca) very often.

Hash Tables

● So, the idea is that we want to scramble the
data (including all bits of the data) in a way that
we remove any obvious pattern, making the
output look random(ish) regardless of whether
the input is truly random or truly patternless.

Hash Tables

● So, the idea is that we want to scramble the
data (including all bits of the data) in a way that
we remove any obvious pattern, making the
output look random(ish) regardless of whether
the input is truly random or truly patternless.

● This property is known as the avalanche effect:
● We want a minor change in the input data to have a

major effect on the output (ideally, producing a
hash that looks completely unrelated to the one for
the similar data)

Hash Tables

● A true avalanche effect is not only difficult to
design, but also very hard to achieve without
sacrificing efficiency (it would typically require
a loop, applying some formula several times
over, etc. etc.)

● So, we're typically happy with a moderate
avalanche effect, in which at least the hash
values are spread out through the range, even
for close or related inputs.

Hash Tables

● One of the simple operations that accomplishes
this is multiplication by a number (preferably
prime) that is large enough to produce overflow
for most input values.

Hash Tables

● One of the simple operations that accomplishes
this is multiplication by a number (preferably
prime) that is large enough to produce overflow
for most input values.

● So, the following would be a better hash
function for an int value:

 int hash (int n)
 {
 return (n * 581869333) % m;
 }

Hash Tables

● Several caveats:
● Signed arithmetic is not particularly friendly to

modular arithmetic. So, often enough, we prefer to
work with unsigned int data types for the hash
value and the intermediate calculations.

● Modular arithmetic (modulo operations) are not as
fast as we would like — they involve a division.
– An analogy: what is 7315 modulo 100 ? (easy — right?)

Hash Tables

● Several caveats:
● Signed arithmetic is not particularly friendly to

modular arithmetic. So, often enough, we prefer to
work with unsigned int data types for the hash
value and the intermediate calculations.

● Modular arithmetic (modulo operations) are not as
fast as we would like — they involve a division.
– An analogy: what is 7315 modulo 100 ? (easy — right?)
– What is 7315 modulo 87 ? (in the spirit of fairness, try to

do this one with paper and pencil — i.e., without a
calculator; after all, you didn't need it for the first one!)

Hash Tables

● Now, the operation modulo 100 was particularly
easy for us because our brains work with
numbers in base 10, and taking the remainder
of a division by a power of 10 is trivial! (we
don't need to do a division at all — we don't
need to do any arithmetic at all!)

Hash Tables

● Now, the operation modulo 100 was particularly
easy for us because our brains work with
numbers in base 10, and taking the remainder
of a division by a power of 10 is trivial! (we
don't need to do a division at all — we don't
need to do any arithmetic at all!)

● The important detail is that it's not the number
10 (ten) that has anything special — it is the
fact that we're dividing by a power of the base!!
(in our case, 10)

Hash Tables

● So, if for our brains, multiplying, dividing, and
taking remainders by powers of 10 is trivial and
efficient, what do we think would be trivial and
efficient for a computer to do?

Hash Tables

● So, if for our brains, multiplying, dividing, and
taking remainders by powers of 10 is trivial and
efficient, what do we think would be trivial and
efficient for a computer to do?

● Computers work in base 2, so multiplication,
division, and modulo powers of two are
particularly easy operations

Hash Tables

● For the same reason that multiplying in decimal
times, say, 10³ means adding three zeros to the
right, and dividing by 10³ means chopping off
the three right-most digits, we have that:

● In binary, multiplying times 8 (2³) means adding
three zeros to the right, and dividing by 8
means chopping off the three least-significant
bits
● Of course, this applies in general for 2n.

Hash Tables

● Question: how do we add three (or n) zeros to
the right?

Hash Tables

● Question: how do we add three (or n) zeros to
the right?
● If we keep the bits aligned, we notice that this is the

same as shifting the bits three (or n) positions to the
left, filling with zeros:

 0001011101

Hash Tables

● Question: how do we add three (or n) zeros to
the right?
● If we keep the bits aligned, we notice that this is the

same as shifting the bits three (or n) positions to the
left, filling with zeros:

 0001011101

 1011101000

Hash Tables

● Question: how do we add three (or n) zeros to
the right?
● If we keep the bits aligned, we notice that this is the

same as shifting the bits three (or n) positions to the
left, filling with zeros:

 0001011101

 1011101000
● In C++, we do this with the << operator:

 x = x << 3; // or x <<= 3;

Hash Tables

● Perhaps more interesting is: what is, in binary,
the result of a number modulo, say, 2³ ?
● For example, 1001101 modulo 2³

Hash Tables

● Perhaps more interesting is: what is, in binary,
the result of a number modulo, say, 2³ ?
● For example, 1001101 modulo 2³
● Ok, so it is 101 (the three right-most bits) — for the

exact same reason that 73215 modulo 10³ is 215
(the three right-most digits)

Hash Tables

● Follow-up question: How do we extract the
three (or in general, the n, for a given n) right-
most (least-significant) bits in C++?

Hash Tables

● Follow-up question: How do we extract the
three (or in general, the n, for a given n) right-
most (least-significant) bits in C++?
● You recall AND operations, right?

0 AND 0 = 0 1 AND 0 = 0
0 AND 1 = 0 1 AND 1 = 1

Hash Tables

● Follow-up question: How do we extract the
three (or in general, the n, for a given n) right-
most (least-significant) bits in C++?
● You recall AND operations, right?

0 AND 0 = 0 1 AND 0 = 0
0 AND 1 = 0 1 AND 1 = 1

Conclusion: 0 AND x is 0; 1 AND x is x
 where x is a value 0 or 1 (a single bit)

Hash Tables

● In C++, we have the bitwise and operator, the &

Hash Tables

● In C++, we have the bitwise and operator, the &

(and you thought that using that symbol for
address-of and for references and pass-by-
reference was confusing... HA!! :-))

Hash Tables

● In C++, we have the bitwise and operator, the &

So, if we have a variable x with some value,
and a variable mask with a “bit mask” — zeros
where we want to “mask out” those bits and
ones where we want to let those bits through,
then we do:
 x = x & mask; // or x &= mask;

to clear the bits in x where mask has zeros.

Hash Tables

● Example:
 unsigned int x = 0xA5B7;
 unsigned int mask = 0xFF; // eight ones

 x &= mask;
 // now, x contains 0xB7

x: 1010 0101 1011 0111
mask: 0000 0000 1111 1111
x & mask: 0000 0000 1011 0111

Hash Tables

● So, how do we easily obtain the mask with the
right amount of ones in the least-significant
bits?
● Hopefully we remember, from assignment 1

(actually, hopefully you remember this from your
Digital Circuits course!) that n ones in binary is the
value 2n – 1 (2n is 1 followed by n zeros — if we
subtract one, we get n ones)

Hash Tables

● And hopefully you remember from a few slides
ago that multiplying times 2n is adding n zeros
to the right.

● In particular, 2n, which is 1 × 2n , can be
obtained by taking 1 and adding n zeros to the
right — or equivalently, shift-left n positions!

Hash Tables

● Summarizing: the “ultra efficient” way to obtain
n ones in C++ is through the expression
(1 << n) − 1

● And of course, the “ultra efficient” way to obtain
a value (say, the variable x) modulo 2n is:

 x &= (1 << n) − 1

Hash Tables

● If we have the size of our hash table in a
variable size and we know that that size is
guaranteed to be a power of 2, then the
efficient way of taking a value (say, x) modulo
size would simply be:

 x & (size − 1) // equivalent to x % size

● Warning: the above works ONLY if we know
that size is a power of 2 !!!

Hash Tables

● So, you'll understand why in practice, we
always want the size of hash tables to be a
power of 2 !!
● As much as in our examples (which were intended

for our brains to process, not for a computer!) we
always wanted hash tables of size one hundred, or
one thousand!

Hash Tables

● Now, how's this for a plot twist:
● In general, when doing these types of scrambling

operations to values, in the resulting values, the bits
from around the middle of the result tend to be
more “random(ish)” than the least-significant ones.

Hash Tables

● Now, how's this for a plot twist:
● In general, when doing these types of scrambling

operations to values, in the resulting values, the bits
from around the middle of the result tend to be
more “random(ish)” than the least-significant ones.

● So, let's take a look at this demo, from Professor
Douglas Harder's slides (taken directly for
convenience, to avoid switching documents)

Mapping Down to 0, ..., M – 1

68

The Multiplicative Method

Suppose that the value m = 10 (M = 1024) and n = 42
const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

6.3.3

Mapping Down to 0, ..., M – 1

69

The Multiplicative Method

First calculate the shift
const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1

Mapping Down to 0, ..., M – 1

70

The Multiplicative Method

Next, n = 42 or 1010102
const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1

Mapping Down to 0, ..., M – 1

71

The Multiplicative Method

Calculate Cn
const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1

Mapping Down to 0, ..., M – 1

72

The Multiplicative Method

Right shift this value 11 bits—equivalent to dividing by 211

const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

shift = 11

m = 10
n = 42

6.3.3.1

Mapping Down to 0, ..., M – 1

73

The Multiplicative Method

Next, start with 1
const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1

Mapping Down to 0, ..., M – 1

74

The Multiplicative Method

Left shift 1 m = 10 bits yielding 210

const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1

Mapping Down to 0, ..., M – 1

75

The Multiplicative Method

Subtracting 1 yields m = 10 ones
const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1

Mapping Down to 0, ..., M – 1

76

The Multiplicative Method

Taken the bitwise to clear all but the last 10 bits
const unsigned int C = 581869333; // some number

unsigned int hash_M(unsigned int n, unsigned int m) {
 unsigned int shift = (32 – m)/2;
 return ((C*n) >> shift) & ((1 << m) – 1);
}

m = 10
n = 42

6.3.3.1

Summary

● During this class, we discussed:
● Typical uses for hash tables (representing sets and

associative containers)
● Chained hashing
● Good and efficient hash functions

– In particular, we looked at several tricks to improve
efficiency, based on the binary nature of a computer's
representation of numbers and arithmetic.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

