
  

Hash Tables – Double hashing

Carlos Moreno                                
cmoreno @ uwaterloo.ca                         

EIT-4103                                   

https://ece.uwaterloo.ca/~cmoreno/ece250



  

Hash Tables – Double hashing

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Hash Tables – Double hashing

● Today's class:
● We'll look at one of the issues with linear probing, 

namely clustering
● Discuss double hashing:

– Use one hash function to determine the bin
– A second hash function determines the jump size for the 

probing sequence.
● Look at some practical issues and approaches to 

deal with these issues.



  

Hash Tables – Double hashing

● One important problem with linear probing is 
clustering — as collisions start to occur, then 
blocks of contiguous occupied bins (clusters) 
appear.



  

Hash Tables – Double hashing

● One important problem with linear probing is 
clustering — as collisions start to occur, then 
blocks of contiguous occupied bins (clusters) 
appear.

● And a quite unfortunate aspect is that the 
longer these clusters, the longer our searches 
or insertions (or deletions) will take  (and 
remember that we wanted them to be constant 
time and fast!)



  

Hash Tables – Double hashing

● An even more unfortunate aspect is the fact 
that the longer these clusters, the more likely it 
will be that they will grow with each insertion!
● This is because a new value inserted will make the 

cluster grow if the hash falls anywhere in the 
interval [CS−1, CE+1], where CS, CE are the 

beginning and the end of the cluster, respectively.
– Any hash that falls in the cluster will end up taking the 

position CE+1, as a result of the linear probing.



  

Hash Tables – Double hashing

● One idea that could come to mind is to do linear 
probing using a jump size p;  that is, if there is a 
collision, instead of skipping to the next bin to 
probe it, skip p bins forward and probe there.



  

Hash Tables – Double hashing

● One idea that could come to mind is to do linear 
probing using a jump size p;  that is, if there is a 
collision, instead of skipping to the next bin to 
probe it, skip p bins forward and probe there.

● The bad news:  It turns out that if the jump size 
is fixed, this does not make the slightest 
difference with respect to our “standard” linear 
probing  (i.e., with jump size p = 1)



  

Hash Tables – Double hashing

● This is a direct consequence of the jump size 
being fixed.
● Jump size different from one just makes it a bit 

more difficult to visualize, but the problem is exactly 
the same



  

Hash Tables – Double hashing

● So...  What if we could choose a different jump 
size for each insertion?



  

Hash Tables – Double hashing

● So...  What if we could choose a different jump 
size for each insertion?
 

● For example, the first insertion uses jump size 
1, second insertion jump size 2, and so on...



  

Hash Tables – Double hashing

● So...  What if we could choose a different jump 
size for each insertion?
 

● For example, the first insertion uses jump size 
1, second insertion jump size 2, and so on...
● Would this work, and avoid the issue of clustering?



  

Hash Tables – Double hashing

● So...  What if we could choose a different jump 
size for each insertion?
 

● For example, the first insertion uses jump size 
1, second insertion jump size 2, and so on...
● Would this work, and avoid the issue of clustering?

● Clearly, not at all — how could we do lookups, if the 
probing sequence depends on the order in which 
the elements were inserted, which we don't (can't) 
keep track of !



  

Hash Tables – Double hashing

● However, if the jump size was a function of the 
value being inserted, things would work, right?



  

Hash Tables – Double hashing

● However, if the jump size was a function of the 
value being inserted, things would work, right?
 

● A function of the value being inserted ... sounds 
familiar, doesn't it?



  

Hash Tables – Double hashing

● However, if the jump size was a function of the 
value being inserted, things would work, right?
 

● A function of the value being inserted ... sounds 
familiar, doesn't it?

● It would be a bad idea to re-use the same hash 
function that we used to obtain the bin
● However, we could use a second (different) hash 

function



  

Hash Tables – Double hashing

● We recall from two classes ago that we wanted 
to scramble the bits of the data and then select 
a subset of those bits (e.g., the m bits from the 
middle)

● What about taking advantage of the 
computation already done, and choose a 
different block of bits for the second hash 
function?



  

Hash Tables – Double hashing

● Let's look at an example, not with bits, but with 
something more human-brain-friendly:
● The hash table uses size 10
● For the hash function, multiply the value times 117 

and keep the right-most digit
– For the second hash function (jump size), just use the 

same result, and take the second digit



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:

0 1 2 3 4 5 6 7 8 9



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 14×117 = 1638    bin 8  (and jump size 3 — not ⇒

relevant now, since this insertion causes no 
collision)

0 1 2 3 4 5 6 7 8 9



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 14×117 = 1638    bin 8  (and jump size 3 — not ⇒

relevant now, since this insertion causes no 
collision)

0 1 2 3 4 5 6 7 8 9

14



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 29×117 = 3393    bin 3  (jump size not relevant)⇒

0 1 2 3 4 5 6 7 8 9

14



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 29×117 = 3393    bin 3  (jump size not relevant)⇒

0 1 2 3 4 5 6 7 8 9

1429



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 43×117 = 5031    bin 1  (jump size not relevant)⇒

0 1 2 3 4 5 6 7 8 9

1429



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 43×117 = 5031    bin 1  (jump size not relevant)⇒

0 1 2 3 4 5 6 7 8 9

142943



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 19×117 = 2223    bin 3,  causing a collision  (jump ⇒

size given by the second digit, 2)
– Probe bin 3 + 2 — available, so we're done:

0 1 2 3 4 5 6 7 8 9

142943



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 19×117 = 2223    bin 3,  causing a collision  (jump ⇒

size given by the second digit, 2)
– Probe bin 3 + 2 — available, so we're done:

0 1 2 3 4 5 6 7 8 9

142943 19



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 5×117 = 585    bin 5,  causing a collision  (jump ⇒

size given by the second digit, 8)
– Where would this one end up?

0 1 2 3 4 5 6 7 8 9

142943 19



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 5×117 = 585    bin 5,  causing a collision  (jump ⇒

size given by the second digit, 8)
– 5 + 8 (modulo 10, of course) is 3, which is already taken, 

so we check 3 + 8, which is 1, also taken, then bin 9!

0 1 2 3 4 5 6 7 8 9

142943 19



  

Hash Tables – Double hashing

● We'll insert values 14, 29, 43, 19, and 5 into the 
initially empty hash table:
● 5×117 = 585    bin 5,  causing a collision  (jump ⇒

size given by the second digit, 8)
– 5 + 8 (modulo 10, of course) is 3, which is already taken, 

so we check 3 + 8, which is 1, also taken, then bin 9!

0 1 2 3 4 5 6 7 8 9

142943 19 5



  

Hash Tables – Double hashing

● There's a big (read: BIG!) problem with this.   
Let's try inserting 59:

0 1 2 3 4 5 6 7 8 9

142943 19 14 5



  

Hash Tables – Double hashing

● There's a big (read: BIG!) problem with this.   
Let's try inserting 59:
● 59×117 = 6903    bin 3, causing a collision, so we ⇒

choose jump size ...  Oops!

0 1 2 3 4 5 6 7 8 9

142943 19 14 5



  

Hash Tables – Double hashing

● There's a big (read: BIG!) problem with this.   
Let's try inserting 59:
● Ok, so we could fix this by not allowing the second 

hash function to take value 0

0 1 2 3 4 5 6 7 8 9

142943 19 14 5



  

Hash Tables – Double hashing

● There's a big (read: BIG!) problem with this.   
Let's try inserting 59:
● Ok, so we could fix this by not allowing the second 

hash function to take value 0  (could we do that with 
just an if?  If the value is 0, just make it 1 — why 
not?)

0 1 2 3 4 5 6 7 8 9

142943 19 14 5



  

Hash Tables – Double hashing

● There's a big (read: BIG!) problem with this.
● But that's not all — let's try inserting 74:

0 1 2 3 4 5 6 7 8 9

142943 19 14 5



  

Hash Tables – Double hashing

● There's a big (read: BIG!) problem with this.
● But that's not all — let's try inserting 74:
● 74×117 = 8658    bin 8, causing a collision, so we ⇒

get jump size = 5, so we probe .... and... oops!

0 1 2 3 4 5 6 7 8 9

142943 19 14 5



  

Hash Tables – Double hashing

● Why does this happens?
● How do we fix it?

0 1 2 3 4 5 6 7 8 9

142943 19 14 5



  

Hash Tables – Double hashing

● The problem is that the cycle is given by the 
least-common-multiple of the two values. 

● We'd like it to be the product of the two 
numbers, but if the numbers are not relatively 
prime (i.e., share common factors), then the 
LCM is lower.



  

Hash Tables – Double hashing

● The idea is that the jump size and the table size 
should be relatively prime (that is, they should 
have no common factors!)



  

Hash Tables – Double hashing

● The idea is that the jump size and the table size 
should be relatively prime (that is, they should 
have no common factors!)
● This guarantees that every bin will be visited before 

cycling and start repeating bins.



  

Hash Tables – Double hashing

● The idea is that the jump size and the table size 
should be relatively prime (that is, they should 
have no common factors!)
● This guarantees that every bin will be visited before 

cycling and start repeating bins.
 

● And this is easy if one of the numbers (e.g., the 
table size) is prime  (every number is relatively 
prime to a prime number, of course!)



  

Hash Tables – Double hashing

● But a prime table size has several problems:
● Modulo operations become expensive  (can't take 

advantage of bit shifts and bit and operations)



  

Hash Tables – Double hashing

● But a prime table size has several problems:
● Modulo operations become expensive  (can't take 

advantage of bit shifts and bit and operations)
● Also, dynamically growing the size gets complicated 

and expensive (have to find prime numbers for the 
new size).



  

Hash Tables – Double hashing

● But wait !!!  We had mentioned that we want 
table sizes that are powers of 2 anyway!



  

Hash Tables – Double hashing

● But wait !!!  We had mentioned that we want 
table sizes that are powers of 2 anyway!

● In addition to all the good things about powers 
of 2 that we already saw.... Another great thing 
about powers of two is that their only factor is 
2 ... 



  

Hash Tables – Double hashing

● But wait !!!  We had mentioned that we want 
table sizes that are powers of 2 anyway!

● In addition to all the good things about powers 
of 2 that we already saw.... Another great thing 
about powers of two is that their only factor is 
2 ... 

● So it's easy to find numbers relatively prime to 
them — any odd number is relatively prime to 
any power of 2 !!!



  

Hash Tables – Double hashing

● Problem:  How do we get a hash function that is 
guaranteed to be an odd value?



  

Hash Tables – Double hashing

● Problem:  How do we get a hash function that is 
guaranteed to be an odd value?
● Hint:  what does an odd value look in binary?



  

Hash Tables – Double hashing

● Problem:  How do we get a hash function that is 
guaranteed to be an odd value?
● Hint:  what does an odd value look in binary?
● Clearly, a number is odd if and only if its binary 

representation has a 1 in the least-significant bit.
– Proof:



  

Hash Tables – Double hashing

● Problem:  How do we get a hash function that is 
guaranteed to be an odd value?
● Hint:  what does an odd value look in binary?
● Clearly, a number is odd if and only if its binary 

representation has a 1 in the least-significant bit.
– Proof:

N = ∑
k=0

m

bk 2k = b0 +∑
k=1

m

bk 2k = b0 + 2 ∑
k=1

m

bk 2k−1



  

Hash Tables – Double hashing

● Problem:  How do we get a hash function that is 
guaranteed to be an odd value?
● Hint:  what does an odd value look in binary?
● Clearly, a number is odd if and only if its binary 

representation has a 1 in the least-significant bit.
– Proof:

– If b0 is 1, the number has the form 1 + 2n;  otherwise, it 
has the form 2n.

N = ∑
k=0

m

bk 2k = b0 +∑
k=1

m

bk 2k = b0 + 2 ∑
k=1

m

bk 2k−1



  

Hash Tables – Double hashing

● So, how do we get a hash function that always 
has the LSB set to 1?



  

Hash Tables – Double hashing

● So, how do we get a hash function that always 
has the LSB set to 1?
● It's quite straightforward, actually;  if we want, say, 

8 bits total, we take seven bits from the partial result 
with the “scrambled” bits, shift them to the second 
least-significant bit, and set bit 0 to 1.



  

Hash Tables – Double hashing

● So, how do we get a hash function that always 
has the LSB set to 1?
● It's quite straightforward, actually;  if we want, say, 

8 bits total, we take seven bits from the partial result 
with the “scrambled” bits, shift them to the second 
least-significant bit, and set bit 0 to 1.

● The last step is done with bitwise OR (vertical bar 
operator in C++):

  hash = ((result & mask) >> shift) | 1;



  

Hash Tables – Double hashing

● Next, we'll look at removing elements.



  

Hash Tables – Double hashing

● Can we use the same (efficient) trick as we did 
with linear probing?



  

Hash Tables – Double hashing

● Can we use the same (efficient) trick as we did 
with linear probing?

● How do we determine the sequence of 
elements to scan, if they're not consecutive?



  

Hash Tables – Double hashing

● Can we use the same (efficient) trick as we did 
with linear probing?

● How do we determine the sequence of 
elements to scan, if they're not consecutive?

● How do we check in constant time if a given 
element is going to be in trouble due to the hole 
left by the deletion?



  

Hash Tables – Double hashing

● Any ideas?



  

Hash Tables – Double hashing

● Any ideas?
● Hint:  we already saw the approach that we need 

here!



  

Hash Tables – Double hashing

● Any ideas?
● Hint:  we already saw the approach that we need 

here!
● Yes — we pretty much have no choice but to mark 

the deleted bins with a value designated to denote 
a bin from which an element was removed.



  

Hash Tables – Double hashing

● Any ideas?
● Hint:  we already saw the approach that we need 

here!
● Yes — we pretty much have no choice but to mark 

the deleted bins with a value designated to denote 
a bin from which an element was removed.
– Like we mentioned, when searching, this special mark is 

interpreted as “bin is occupied”.  But when inserting, the 
mark is interpreted as “available”, and it can be of course 
overwritten by the value being inserted.



  

Hash Tables – Double hashing

● We may want to keep a counter of how many of 
these special marks we have, and if it exceeds 
some threshold, we just reallocate and copy the 
elements, re-hashing everything.



  

Hash Tables – Double hashing

● We may want to keep a counter of how many of 
these special marks we have, and if it exceeds 
some threshold, we just reallocate and copy the 
elements, re-hashing everything.
● This (a linear time operation) should not affect the 

fact that on average, things happen in Θ(1).



  

Hash Tables – Double hashing

● We also want to keep track of the load factor, λ 
(the ratio of elements in the table to the size of 
the table), so that we double the size if λ 
exceeds a threshold  (typically 2/3 or so)



  

Summary

● During today's class, we discussed:
● Clustering with linear probing
● Double hashing:

– Use one hash function to determine the bin
– A second hash function determines the jump size for the 

probing sequence.
● How to make the second hash suitable (typically, 

table size 2m and jump size always odd)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

