UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

ot

Carlos Moreno
cmoreno @uwaterloo.ca

EIT-4103

" juk1740 www fotosearc h.com

https://ece.uwaterloo.ca/~cmoreno/ece250

These slides, the course material, and course web site are based on work by Douglas W. Harder

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

Standard reminder to set phones to
silent/vibrate mode, please!

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* Today's class:

 We'll look at one of the issues with linear probing,
namely clustering

* Discuss double hashing:

- Use one hash function to determine the bin

- A second hash function determines the jump size for the
probing sequence.

 Look at some practical issues and approaches to
deal with these issues.

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* One important problem with linear probing is
clustering — as collisions start to occur, then
blocks of contiguous occupied bins (clusters)
appear.

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* One important problem with linear probing is
clustering — as collisions start to occur, then
blocks of contiguous occupied bins (clusters)
appear.

 And a quite unfortunate aspect is that the
longer these clusters, the longer our searches
or insertions (or deletions) will take (and
remember that we wanted them to be constant
time and fast!)

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 An even more unfortunate aspect is the fact
that the longer these clusters, the more likely it
will be that they will grow with each insertion!

* This is because a new value inserted will make the
cluster grow if the hash falls anywhere in the
interval [Cs—1, C+1], where Cg, C. are the

beginning and the end of the cluster, respectively.

- Any hash that falls in the cluster will end up taking the
position C.+1, as a result of the linear probing.

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* One idea that could come to mind is to do linear
probing using a jump size p; thatis, if there is a
collision, instead of skipping to the next bin to
probe it, skip p bins forward and probe there.

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* One idea that could come to mind is to do linear
probing using a jump size p; thatis, if there is a
collision, instead of skipping to the next bin to
probe it, skip p bins forward and probe there.

 The bad news: It turns out that if the jump size
s fixed, this does not make the slightest
difference with respect to our “standard” linear
probing (i.e., with jump size p=1)

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* This is a direct consequence of the jump size
being fixed.

» Jump size different from one just makes it a bit
more difficult to visualize, but the problem is exactly
the same

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* S0... What if we could choose a different jump
size for each insertion?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* S0... What if we could choose a different jump
size for each insertion?

* For example, the first insertion uses jump size
1, second insertion jump size 2, and so on...

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* S0... What if we could choose a different jump
size for each insertion?

* For example, the first insertion uses jump size
1, second insertion jump size 2, and so on...

* Would this work, and avoid the issue of clustering?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* S0... What if we could choose a different jump
size for each insertion?

* For example, the first insertion uses jump size
1, second insertion jump size 2, and so on...

* Would this work, and avoid the issue of clustering?

* We'll discuss in class why it doesn't!

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 However, if the jJump size was a function of the
value being inserted, things would work, right?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 However, if the jJump size was a function of the
value being inserted, things would work, right?

* A function of the value being inserted ... sounds
familiar, doesn't it?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 However, if the jJump size was a function of the
value being inserted, things would work, right?

* A function of the value being inserted ... sounds
familiar, doesn't it?

e |t would be a bad idea to re-use the same hash
function that we used to obtain the bin

 However, we could use a second (different) hash
function

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* We recall from two classes ago that we wanted
to scramble the bits of the data and then select
a subset of those bits (e.g., the m bits from the
middle)

* What about taking advantage of the
computation already done, and choose a
different block of bits for the second hash
function?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* Let's look at an example, not with bits, but with
something more human-brain-friendly:

 The hash table uses size 10

* For the hash function, multiply the value times 117
and keep the right-most digit

- For the second hash function (jump size), just use the
same result, and take the second digit

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

e 14x117 =1638 = bin 8 (and jump size 3 — not
relevant now, since this insertion causes no
collision)

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

e 14x117 =1638 = bin 8 (and jump size 3 — not
relevant now, since this insertion causes no
collision)

14

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

e 29x117 =3393 = bin 3 (jJump size not relevant)

14

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

e 29x117 =3393 = bin 3 (jJump size not relevant)

29 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

 43x117 = 5031 = bin 1 (jump size not relevant)

29 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

 43x117 = 5031 = bin 1 (jump size not relevant)

43 29 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

o 19x117 = 2223 = bin 3, causing a collision (jump
size given by the second digit, 2)

- Probe bin 3 + 2 — available, so we're done:

43 29 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

o 19x117 = 2223 = bin 3, causing a collision (jump
size given by the second digit, 2)

- Probe bin 3 + 2 — available, so we're done:

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 \We'll Insert values 14, 29, 43, 19, and 5 into the
initially empty hash table:

e« 5x117 =385 = bin 5, causing a collision (jump
size given by the second digit, 8)

- Where would this one end up?

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* There's a big (read: BIG!) problem with this.
Let's try inserting 59:

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* There's a big (read: BIG!) problem with this.
Let's try inserting 59:

e 59x117 = 6903 = bin 3, causing a collision, so we
choose jump size ... Oops!

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* There's a big (read: BIG!) problem with this.
Let's try inserting 59:

* Ok, so we could fix this by not allowing the second
hash function to take value 0 (how do we do that?)

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* There's a big (read: BIG!) problem with this.
« But that's not all — let's try inserting 74:

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* There's a big (read: BIG!) problem with this.

« But that's not all — let's try inserting 74:

e /4x117 = 8658 = bin 8, causing a collision, so we
get jJump size = 5, so we probe and... oops!

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 Why does this happens?
« How do we fix it?

43 29 19 14
o 1 2 3 4 5 6 7 8 9

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

e \We'll discuss this in class.

* To be able to continue, let's say that if we
choose sizes that are powers of two (and we
always want to do that anyway), and we
guarantee that the jump size is always an odd
number, we avoid that issue.

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 How do we get a hash function that is
guaranteed to be an odd value?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

 How do we get a hash function that is
guaranteed to be an odd value?

 Hint: what does an odd value look in binary?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* Next, we'll look at removing values.

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

» Can we use the same (efficient) trick as we did
with linear probing?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

» Can we use the same (efficient) trick as we did
with linear probing?

« How do we determine the sequence of
elements to scan, if they're not consecutive?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

» Can we use the same (efficient) trick as we did
with linear probing?

« How do we determine the sequence of
elements to scan, if they're not consecutive?

 How do we check in constant time if a given
element is going to be in trouble due to the hole
left by the deletion?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* Any ideas?

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Hash Tables — Double hashing

* Any ideas?

 Hint: we already saw the approach that we need
here!

UNIVERSITY OF

WATERLOO ECE-250 — Algorithms and Data Structures (Winter 2012)

Summary

» During today's class, we discussed:

e Clustering with linear probing
e Double hashing:

- Use one hash function to determine the bin

- A second hash function determines the jump size for the
probing sequence.

 How to make the second hash suitable (typically,
table size 2™ and jump size always odd)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

