

Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Trees

Standard reminder to set phones to
silent/vibrate mode, please!

Announcements

● Part of assignment 3 posted — additional
questions on trees will be posted by Friday or
possibly Monday. But you can get started with
the questions on topics already covered.

Announcements

● Part of assignment 3 posted — additional
questions on trees will be posted by Friday or
possibly Monday. But you can get started with
the questions on topics already covered.

● From what I'm told, Friday next week we can
move our lecture to 3:30 (if everyone agrees).

Trees

● Today's class:
● Definition of the tree data structure and its

components
● Related concepts:

– Types of nodes, relations between nodes, paths and their
attributes, subtrees

● We'll look at one example — HTML/CSS as a
hierarchical structure that can be represented with
trees.

Trees

● As already mentioned earlier in the course,
trees are the structure to be used to represent
hierarchical data.

Trees

● As already mentioned earlier in the course,
trees are the structure to be used to represent
hierarchical data.
● Perhaps a slight twist is that we will see some

cases in which some characteristics of the tree will
make them suitable for other situations as well,
where the data is not hierarchical at all.

Trees

● A rooted tree data structure stores information
in nodes
● If we look at it by analogy with linked lists:

– There is a first node, or root
– Each node has variable number of next pointers
– Each node, other than the root, has exactly one node

pointing to it

Trees

● A rooted tree data structure stores information
in nodes
● If we look at it by analogy with linked lists:

– There is a first node, or root
– Each node has variable number of next pointers
– Each node, other than the root, has exactly one node

pointing to it
● If we extend the analogy to doubly-linked lists:

– Each node could have a “previous” pointer, pointing to
the node immediately above it in the hierarchy.

Trees

● A rooted tree data structure stores information
in nodes

Trees

● Terminology:
● Parent and child nodes:

– Respectively, the node immediately above and nodes
immediately below in the hierarchy

Trees

● Terminology:
● Parent and child nodes:

– Respectively, the node immediately above and nodes
immediately below in the hierarchy

● Every tree has exactly one node that has no parent
(why just one?)

Trees

● Terminology:
● Parent and child nodes:

– Respectively, the node immediately above and nodes
immediately below in the hierarchy

● Every tree has exactly one node that has no parent
(why just one? — we recall that this is one of the
aspects that distinguishes hierarchical from partial
order; more than one can happen for partial
orderings, but not for hierarchical orderings)

Trees

● Terminology:
● Parent and child nodes:

– Respectively, the node immediately above and nodes
immediately below in the hierarchy

● Every tree has exactly one node that has no parent
(the top of the hierarchy)
– This node is called the root node.

Trees

● Terminology:
● Parent and child nodes:

– Respectively, the node immediately above and nodes
immediately below in the hierarchy

● Every tree has exactly one node that has no parent
(the top of the hierarchy)
– This node is called the root node.
– Every other node has:

● Exactly one parent node, or just parent.
● Zero or more child nodes, or just children.

Trees

● Example:
● Node H is the root node (the node containing H)
● Node I has three children, and its parent is node H

Trees

● Terminology:
● The degree of a node is defined as the number of

children it has — example: deg(I) is 3.

Trees

● Terminology:
● Nodes with the same parent are sibling nodes, or

just siblings — example: nodes J, K, L are siblings.

Trees

● Terminology:
● Nodes with degree zero are called leaf nodes.
● The others are called internal nodes (or informally,

non-leaf nodes)

Trees

● Terminology:
● These trees are equal if the order of the children is

ignored (unordered trees)
● They are different if order is relevant (ordered trees)

Trees

● Terminology:
● A path is a sequence of nodes (n0, n1, ··· , nL) where

nk+1 is a child of nk 0 ≤ ∀ k < L

– The length of this path is L — notice that the length is
NOT the number of nodes involved; a good analogy
would be that of the measured distance between the
extremes.

Trees

● Example:
● The path (B, E, G) has length 2

Trees

● For each node in a tree, there exists a unique
path (why unique?) from the root to that node.

Trees

● For each node in a tree, there exists a unique
path (why unique?) from the root to that node.
● The length of this path is the depth of the node

– Node E has depth 2
– Node L has depth 3

Trees

● For each node in a tree, there exists a unique
path (why unique?) from the root to that node.
● The length of this path is the depth of the node

– Node E has depth 2
– Node L has depth 3

● The root node has
depth 0 (right?)

Trees

● The height of a tree is defined as the maximum
depth of any node within the tree
● The height of a tree with one node is 0

● For convenience, we define the height of an
empty tree to be −1

Trees

● Terminology:
● If a path exists from node a to node b, then:

– a is an ancestor of b
– b is a descendent of a

Trees

● Terminology:
● If a path exists from node a to node b, then:

– a is an ancestor of b
– b is a descendent of a

● Thus, every node is both an ancestor and a
descendant of itself

Trees

● Terminology:
● If a path exists from node a to node b, then:

– a is an ancestor of b
– b is a descendent of a

● Thus, every node is both an ancestor and a
descendant of itself

● We can add the qualifier strict to exclude equality:
a is a strict descendant of b if a is a descendant
of b but a ≠ b

Trees

● Terminology:
● If a path exists from node a to node b, then:

– a is an ancestor of b
– b is a descendent of a

● Thus, every node is both an ancestor and a
descendant of itself

● We can add the qualifier strict to exclude equality:
a is a strict descendant of b if a is a descendant
of b but a ≠ b

● The root node is an ancestor of all nodes

Trees

● Example:
● The descendants of node B are

B, C, D, E, F, and G:

● The ancestors of node I are
I, H, and A:

Trees

● Terminology:
● Given a node N within a tree with root R, the

collection of all of the descendants of N (along with
the associations) is said to be a subtree of the given
tree, with root node N.

Trees

● Terminology:
● Given a node N within a tree with root R, the

collection of all of the descendants of N (along with
the associations) is said to be a subtree of the given
tree, with root node N.

● In that spirit, we could provide a recursive definition
of a tree:
– A single node is a tree (node with degree 0)
– A node with degree n is the root of a tree if all of its n

children are the root of disjoint trees (no common nodes
with the other subtrees)

Trees – Example/Case-Study

● A somewhat obvious example of when Tree
data structures may be useful is HTML (or
XHTML, XML, whatever they're calling it these
days :-))
● Writing (or reading) HTML of course does not

require explicit use of tree data structures.
● But how about a program that needs to process it?

– Obvious example: the rendering engine of a web
browser. It needs to take into account the hierarchical
structure of the code to be able to determine the actual
graphical look (rendering).

Trees – Example/Case-Study

● A somewhat obvious example of when Tree
data structures may be useful is HTML (or
XHTML, XML, whatever they're calling it these
days :-))
● Even more: the document can be dynamically

modified (for example, through JavaScript, which is
a client-side, browser-powered scripting language)
– So, the browser software better have efficient

mechanisms to determine the new rendering!

Trees – Example/Case-Study

● A somewhat obvious example of when Tree
data structures may be useful is HTML (or
XHTML, XML, whatever they're calling it these
days :-))
● Again, we keep in mind: HTML/XML is hierarchical

by nature, so a data structure that represents this
hierarchy has to be the right solution!

Trees – Example/Case-Study

● The main idea (this is way oversimplified, BTW)
with HTML is the use of tags that define a
component (usually something that will display
on the browser area).
● Tags can enclose other (nested) tags.

– Not unlike blocks in a program.
● Tags usually have opening and closing

components, enclosed in angle brackets (< >), with
the closing one having a slash before the name:
– Example: <title>ECE-250</title>

Trees – Example/Case-Study

● Consider a more general example:

 <html>

 <head>

 <title>Hello World!</title>

 </head>

 <body>

 <h1>This is a <u>Heading</u></h1>

 <p>This is a paragraph with some

 <u>underlined</u> text.</p>

 </body>

 </html>

Trees – Example/Case-Study
● The hierarchy of nested tags defines a tree with root being the
<html> tag:

 <html>

 <head>

 <title>Hello World!</title>

 </head>

 <body>

 <h1>This is a <u>Heading</u></h1>

 <p>This is a paragraph with some

 <u>underlined</u> text.</p>

 </body>

 </html>

Trees – Example/Case-Study
● The hierarchy of nested tags defines a tree with root being the
<html> tag:

 <html>

 <head>

 <title>Hello World!</title>

 </head>

 <body>

 <h1>This is a <u>Heading</u></h1>

 <p>This is a paragraph with some

 <u>underlined</u> text.</p>

 </body>

 </html>

Trees – Example/Case-Study

● The rendering software defines a tree structure
where the nodes store the attributes of the tag,
and the child nodes are the nested tags.

● This allows it to efficiently propagate (inherit)
attributes (font, size, color, border, etc.) to all
nested tags (a behaviour specified by HTML)

Trees – Example/Case-Study

● For example, if the <body> tag has some
attributes associated, then the tree allows the
browser software to efficiently determine where
these attributes should propagate:

Trees – Example/Case-Study

● Perhaps even more important, when
dynamically changing things, the browser can
efficiently determine what elements are
affected, just following links in the tree:

Trees – Example/Case-Study

● Notice that this includes the fact that children
nodes will (may) have an effect on the parents,
repetitively all the way up to the root:
● If the font size of the second tag <u> is dynamically

changed, we need be able to efficiently determine that
this will make the <p> tag's rendering increase, making
the <body> tag affected as well.

Trees – Example/Case-Study

● An observation: this is an example of an
ordered tree. In HTML, tags are graphically
rendered according to the order in which they
appear (by default — if we use CSS to define
absolute positioning, things change; still, that's
usually done, if at all, just for some of the tags)

Trees

● Bottom line:
● Trees are a very fundamental and very powerful

data structure:
● You will see them again in the near future (and I

mean your future courses, not the future lessons in
our course! :-))

Trees

● Bottom line:
● Trees are a very fundamental and very powerful

data structure:
● You will see them again in the near future (and I

mean your future courses, not the future lessons in
our course! :-))
– That you take a path in Control systems, Telecomm and

Digital signal processing, Image processing or Computer
graphics, embedded systems — no matter what, you'll be
seeing heavy use of trees as a powerful tool to efficiently
solve many of the domain-specific problems.

Trees

● Bottom line:
● Trees are a very fundamental and very powerful

data structure:
– That you take a path in Control systems, Telecomm and

Digital signal processing, Image processing or Computer
graphics — no matter what, you'll be seeing heavy use of
trees as a powerful tool to efficiently solve many of those
problems.

– HTML will seem like a toy example by comparison (we'll
go over some of these additional case-studies as we
progress with our coverage of trees)

Summary

● During today's class, we discussed:
● Definition of trees and related components

– Root, internal, and lead nodes.
– Parent, children, and sibling nodes.
– Path, path length, height, depth.
– Ancestors and descendants.
– Ordered and unordered trees.
– Subtrees.

● An example/case-study: HTML rendering.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

