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Trees

● Today's class:
● We'll discuss one possible implementation for trees 

(the general type of trees)
● We'll look at tree traversal — strategies to visit 

every element in the tree following a given 
sequence
– Breadth-first traversal
– Depth-first traversal — two types (for now), depending on 

whether we deal first with “self” node or with the (strict) 
descendants.



  

Trees

● We recall from several lectures ago, some 
examples of typical operations on hierarchically 
ordered data (determine precedence between 
elements, nearest common predecessor, 
depth).



  

Trees

● We recall from several lectures ago, some 
examples of typical operations on hierarchically 
ordered data (determine precedence between 
elements, nearest common predecessor, 
depth).

● To implement those, and others, it seems clear 
that we need a data structure that follows quite 
closely our “visual” idea of a tree.



  

Trees

● For example, if I simply give you an unordered 
list of IDs for elements, and then an unordered 
list of immediate predecessor pairs, would you 
be able to perform those operations?



  

Trees

● For example, if I simply give you an unordered 
list of IDs for elements, and then an unordered 
list of immediate predecessor pairs, would you 
be able to perform those operations?

● Let's see ... 



  

Trees

● Example:
● Elements are:  T,  H,  D,  G,  E,  P,  A,  S
● Associations are (denoted as pair {parent,child} ):

– {T, E},  {P, D},  {G, H},  {P, S},  {T, A},  {P, T},  {G, P}



  

Trees

● Example:
● Elements are:  T,  H,  D,  G,  E,  P,  A,  S
● Associations are (denoted as pair {parent,child} ):

– {T, E},  {P, D},  {G, H},  {P, S},  {T, A},  {P, T},  {G, P}

● Question (more or less easy):  What is the root of 
that tree?



  

Trees

● Example:
● Elements are:  T,  H,  D,  G,  E,  P,  A,  S
● Associations are (denoted as pair {parent,child} ):

– {T, E},  {P, D},  {G, H},  {P, S},  {T, A},  {P, T},  {G, P}

● Question (more or less easy):  What is the root of 
that tree?
– Follow-up question:  what was the run time that takes for 

you to find the answer?



  

Trees

● Example:
● Elements are:  T,  H,  D,  G,  E,  P,  A,  S
● Associations are (denoted as pair {parent,child} ):

– {T, E},  {P, D},  {G, H},  {P, S},  {T, A},  {P, T},  {G, P}

● Question (a little tougher):  What is nearest 
common predecessor of E and S?



  

Trees

● Example:
● Elements are:  T,  H,  D,  G,  E,  P,  A,  S
● Associations are (denoted as pair {parent,child} ):

– {T, E},  {P, D},  {G, H},  {P, S},  {T, A},  {P, T},  {G, P}

● Question (a little tougher):  What is nearest 
common predecessor of E and S?
– So, we won't even try this one !!!   (and I bet if some of 

you got the answer in less than 45 to 60 seconds it is 
because you drew the corresponding tree !!)



  

Trees

● Example:
● Elements are:  T,  H,  D,  G,  E,  P,  A,  S
● Associations are (denoted as pair {parent,child} ):

– {T, E},  {P, D},  {G, H},  {P, S},  {T, A},  {P, T},  {G, P}

● Question (a little tougher):  What is nearest 
common predecessor of E and S?
– Of course, if I actually show you the corresponding tree, 

then very different story ... 



  

Trees

● Example:
● Elements are:  T,  H,  D,  G,  E,  P,  A,  S
● Associations are (denoted as pair {parent,child} ):

– {T, E},  {P, D},  {G, H},  {P, S},  {T, A},  {P, T},  {G, P}
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Trees

● So, it makes sense that our implementation of a 
tree would provide data that makes it possible 
to “follow the associations”

● Exactly as they graphically appear on a 
diagram, allowing us (our brains) to easily 
follow the associations.



  

Trees

● A typical implementation could be similar to 
what you did (hopefully you did it... right?) in lab 
0 for a linked list:



  

Trees

● A typical implementation could be similar to 
what you did (hopefully you did it... right?) in lab 
0 for a linked list:
● A class Node to represent nodes.
● A class Tree that will own a collection of Node 

objects, and will have, among others, a pointer to 
the root node.



  

Trees

● A typical implementation could be similar to 
what you did (hopefully you did it... right?) in lab 
0 for a linked list:
● A class Node to represent nodes.
● A class Tree that will own a collection of Node 

objects, and will have, among others, a pointer to 
the root node.

● As we mentioned last time, by analogy with a linked 
list, the tree class only needs to know about the root 
node, and then nodes will point to their children.



  

Trees
template <typename Type>
class Node
{
    Type d_element;
    Node<Type> * d_parent;
    std::list<Node<T> *>  d_children;
      // or std::vector — could store them as an array

public:
    Node (const Type & obj, Node<Type> * parent);

    Type retrieve() const;
    Node<Type> * parent() const;
    int degree() const;
    bool is_root() const;
    bool is_leaf() const;
    Node<Type> * child (int n) const;
    int height() const;

    void insert (const Type & obj);
};



  

Trees
● This tree, with six nodes, would be stored as follows:



  

Trees

● The implementations are, for the most part, 
straightforward:
 

    template <typename Type>
    bool Node<Type>::is_root() const
    {
        return parent() == NULL;
    }



  

Trees

● The implementations are, for the most part, 
straightforward:
 

    template <typename Type>
    int Node<Type>::degree() const
    {
        return d_children.size();
    }

    template <typename Type>
    bool Node<Type>::is_leaf() const
    {
        return degree() == 0;
    }



  

Trees

● The implementations are, for the most part, 
straightforward:
 

    template <typename Type>
    int Node<Type>::insert (const Type & obj)
    {
       Node<Type> * subtree = new Node<Type>(obj, this); 
       d_children.push_back (subtree);
    }



  

Trees

● The implementations are, for the most part, 
straightforward:
 

    template <typename Type>
    int Node<Type>::insert (const Type & obj)
    {
       Node<Type> * subtree = new Node<Type>(obj, this); 
       d_children.push_back (subtree);
    }

● Why this as parameter to the constructor?



  

Trees

● Suppose we wanted to compute the size 
(number of nodes) in the tree (say that we 
added a method Node<Type>::size() const:
 



  

Trees

● Suppose we wanted to compute the size 
(number of nodes) in the tree (say that we 
added a method Node<Type>::size() const:

● Hopefully you recall the nice recursive definition 
for a tree...  So, that would seem to suggest 
that size() could perfectly be a recursive 
function! :



  

Trees
 

template <typename Type>
int Node<Type>::size() const
{
    int count = 1;  // counting this one

    for (list<Node<Type> *>::iterator ch = d_children.begin();
                                      ch != d_children.end();
                                      ++ch)
    {
        count += c->size();
    }

    return count;
}



  

Trees

● Side note:  Iterators in the STL  (I'm using the 
STL's linked list class template, std::list)  are 
designed to have a syntax similar to pointers.

● They take advantage of operator overloading, 
which allows us to define functions and 
methods that will be invoked when we use a 
certain operator with an object of that class.



  

Trees

● So, the loop
 
    for (list<Node<Type> *>::iterator ch = d_children.begin();
                                      ch != d_children.end();
                                      ++ch)

is nothing more than a “disguised” version of:
 
    for (list_iterator ch = d_children.begin();
                       !ch.at_end();
                       ch.advance())



  

Trees

● So, the loop
 
    for (list<Node<Type> *>::iterator ch = d_children.begin();
                                      ch != d_children.end();
                                      ++ch)

is nothing more than a “disguised” version of:
 
    for (list_iterator ch = d_children.begin();
                       !ch.at_end();
                       ch.advance())

● The method advance(), for instance, is called 
operator++() — and it's invoked when using ++



  

Trees

● The at_end() issue is a little bit trickier — since 
iterators are like pointers, class list also returns 
an iterator pointing to one-past-end, so that with 
the help from overloaded operators == and !=  
(functions operator==() and operator!=()), we 
can check if we are already outside the range.



  

Trees

● Closing the parenthesis ...  Say now that we 
want to obtain the height of the tree.



  

Trees

● Closing the parenthesis ...  Say now that we 
want to obtain the height of the tree.

● Recursion again ...  Right?



  

Trees

● And since our next topic is tree traversals... 
How are these recursive functions traversing 
the tree?  (i.e., in what order are they visiting 
the nodes of the tree?)



  

Trees

● And since our next topic is tree traversals... 
How are these recursive functions traversing 
the tree?  (i.e., in what order are they visiting 
the nodes of the tree?)

● We'll answer this on the board   (and no, the 
answer is not in the next slides, so if you feel 
like taking notes, by all means do ... )



  

Trees

● Recursive implementations typically lead to a 
depth-first traversal:
● We first go as deep as possible below each node 

before visiting any sibling node.



  

Trees

● Recursive implementations typically lead to a 
depth-first traversal:
● We first go as deep as possible below each node 

before visiting any sibling node.
 

● The other typical traversal is breadth-first — all 
siblings are visited first, before moving to the 
next depth.



  

Trees

● Graphically, depth-first traversal goes like this:



  

Trees

● Breadth-first traversal:



  

Trees

● Breadth-first traversal can be implemented with 
a queue (a FIFO data structure)
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● Breadth-first traversal can be implemented with 
a queue (a FIFO data structure)

● Depth-first requires a stack (LIFO)



  

Trees

● Breadth-first traversal can be implemented with 
a queue (a FIFO data structure)

● Depth-first requires a stack (LIFO)
● Huh??  Didn't we already see some depth-first 

examples?  We didn't use a stack



  

Trees

● Breadth-first traversal can be implemented with 
a queue (a FIFO data structure)

● Depth-first requires a stack (LIFO)
● Huh??  Didn't we already see some depth-first 

examples?  We didn't use a stack — did we??



  

Trees

● Let's look at breadth-first traversal:
● We'll use a queue for the nodes (could be a queue 

holding pointers to the nodes).  The procedure is:



  

Trees

● Let's look at breadth-first traversal:
● We'll use a queue for the nodes (could be a queue 

holding pointers to the nodes).  The procedure is:
– Enqueue the root node.
– While the queue is not empty:

● Dequeue an element
● Enqueue all of the children of the just dequeued node



  

Trees

● Let's look at breadth-first traversal:
● We'll use a queue for the nodes (could be a queue 

holding pointers to the nodes).  The procedure is:
– Enqueue the root node.
– While the queue is not empty:

● Dequeue an element
● Enqueue all of the children of the just dequeued node

– Neat, huh?



  

Trees

● An important notion with depth-first traversals 
comes from the observation that each node is 
visited more than once:
● When in our way down to visit the children nodes, 

and when we get back from each of the children.



  

Trees

● An important notion with depth-first traversals 
comes from the observation that each node is 
visited more than once:
● When in our way down to visit the children nodes, 

and when we get back from each of the children.

● What if we require some processing for the 
present node?  When would we do it?  On our 
way down, or on our way back?



  

Trees

● This leads to the distinction between pre-order 
and post-order depth-first traversals:
● Pre-order means that we first process the current 

node, then move to the children.



  

Trees

● This leads to the distinction between pre-order 
and post-order depth-first traversals:
● Pre-order means that we first process the current 

node, then move to the children.
● Post-order means that we first process the children, 

and then we process the current one.



  

Trees

● This leads to the distinction between pre-order 
and post-order depth-first traversals:
● Pre-order means that we first process the current 

node, then move to the children.
● Post-order means that we first process the children, 

and then we process the current one.
– Later on (a few lectures from now), we'll see in-order 

traversal — a notion that is only applicable for certain 
types of trees.



  

Trees

● So, which one should we use?   Or, if both are 
necessary, when do we use each?



  

Trees

● What about the HTML rendering example?
● Breadth-first, or depth-first?



  

Trees

● What about the HTML rendering example?
● Breadth-first, or depth-first?

● Clearly depth-first:  we need to know about how all 
nested tags (the children/descendants) affect the 
geometry of the containing tag.



  

Trees

● What about the HTML rendering example?
● Breadth-first, or depth-first?

● Clearly depth-first:  we need to know about how all 
nested tags (the children/descendants) affect the 
geometry of the containing tag.

● So, pre-order or post-order?



  

Summary

● During today's class:
● We continued with topics on Trees
● Looked at some implementation approaches
● Investigated traversal strategies:

– Breadth-first  (visit all siblings before descending)
– Depth-first  (go as deep as possible before moving to the 

next sibling)
● Pre-order traversal  (process current node, then children)
● Post-order traversal  (process all children, then current node)
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