

Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Trees

● Today's class:
● We'll discuss one possible implementation for trees

(the general type of trees)
● We'll look at tree traversal — strategies to visit

every element in the tree following a given
sequence
– Breadth-first traversal
– Depth-first traversal — two types (for now), depending on

whether we deal first with “self” node or with the (strict)
descendants.

Trees

● We recall from several lectures ago, some
examples of typical operations on hierarchically
ordered data (determine precedence between
elements, nearest common predecessor,
depth).

Trees

● We recall from several lectures ago, some
examples of typical operations on hierarchically
ordered data (determine precedence between
elements, nearest common predecessor,
depth).

● To implement those, and others, it seems clear
that we need a data structure that follows quite
closely our “visual” idea of a tree.

Trees

● For example, if I simply give you an unordered
list of IDs for elements, and then an unordered
list of immediate predecessor pairs, would you
be able to perform those operations?

Trees

● For example, if I simply give you an unordered
list of IDs for elements, and then an unordered
list of immediate predecessor pairs, would you
be able to perform those operations?

● Let's see ...

Trees

● Example:
● Elements are: T, H, D, G, E, P, A, S
● Associations are (denoted as pair {parent,child}):

– {T, E}, {P, D}, {G, H}, {P, S}, {T, A}, {P, T}, {G, P}

Trees

● Example:
● Elements are: T, H, D, G, E, P, A, S
● Associations are (denoted as pair {parent,child}):

– {T, E}, {P, D}, {G, H}, {P, S}, {T, A}, {P, T}, {G, P}

● Question (more or less easy): What is the root of
that tree?

Trees

● Example:
● Elements are: T, H, D, G, E, P, A, S
● Associations are (denoted as pair {parent,child}):

– {T, E}, {P, D}, {G, H}, {P, S}, {T, A}, {P, T}, {G, P}

● Question (more or less easy): What is the root of
that tree?
– Follow-up question: what was the run time that takes for

you to find the answer?

Trees

● Example:
● Elements are: T, H, D, G, E, P, A, S
● Associations are (denoted as pair {parent,child}):

– {T, E}, {P, D}, {G, H}, {P, S}, {T, A}, {P, T}, {G, P}

● Question (a little tougher): What is nearest
common predecessor of E and S?

Trees

● Example:
● Elements are: T, H, D, G, E, P, A, S
● Associations are (denoted as pair {parent,child}):

– {T, E}, {P, D}, {G, H}, {P, S}, {T, A}, {P, T}, {G, P}

● Question (a little tougher): What is nearest
common predecessor of E and S?
– So, we won't even try this one !!! (and I bet if some of

you got the answer in less than 45 to 60 seconds it is
because you drew the corresponding tree !!)

Trees

● Example:
● Elements are: T, H, D, G, E, P, A, S
● Associations are (denoted as pair {parent,child}):

– {T, E}, {P, D}, {G, H}, {P, S}, {T, A}, {P, T}, {G, P}

● Question (a little tougher): What is nearest
common predecessor of E and S?
– Of course, if I actually show you the corresponding tree,

then very different story ...

Trees

● Example:
● Elements are: T, H, D, G, E, P, A, S
● Associations are (denoted as pair {parent,child}):

– {T, E}, {P, D}, {G, H}, {P, S}, {T, A}, {P, T}, {G, P}

G

P H

T SD

A E

Trees

● So, it makes sense that our implementation of a
tree would provide data that makes it possible
to “follow the associations”

● Exactly as they graphically appear on a
diagram, allowing us (our brains) to easily
follow the associations.

Trees

● A typical implementation could be similar to
what you did (hopefully you did it... right?) in lab
0 for a linked list:

Trees

● A typical implementation could be similar to
what you did (hopefully you did it... right?) in lab
0 for a linked list:
● A class Node to represent nodes.
● A class Tree that will own a collection of Node

objects, and will have, among others, a pointer to
the root node.

Trees

● A typical implementation could be similar to
what you did (hopefully you did it... right?) in lab
0 for a linked list:
● A class Node to represent nodes.
● A class Tree that will own a collection of Node

objects, and will have, among others, a pointer to
the root node.

● As we mentioned last time, by analogy with a linked
list, the tree class only needs to know about the root
node, and then nodes will point to their children.

Trees
template <typename Type>
class Node
{
 Type d_element;
 Node<Type> * d_parent;
 std::list<Node<T> *> d_children;
 // or std::vector — could store them as an array

public:
 Node (const Type & obj, Node<Type> * parent);

 Type retrieve() const;
 Node<Type> * parent() const;
 int degree() const;
 bool is_root() const;
 bool is_leaf() const;
 Node<Type> * child (int n) const;
 int height() const;

 void insert (const Type & obj);
};

Trees
● This tree, with six nodes, would be stored as follows:

Trees

● The implementations are, for the most part,
straightforward:

 template <typename Type>
 bool Node<Type>::is_root() const
 {
 return parent() == NULL;
 }

Trees

● The implementations are, for the most part,
straightforward:

 template <typename Type>
 int Node<Type>::degree() const
 {
 return d_children.size();
 }

 template <typename Type>
 bool Node<Type>::is_leaf() const
 {
 return degree() == 0;
 }

Trees

● The implementations are, for the most part,
straightforward:

 template <typename Type>
 int Node<Type>::insert (const Type & obj)
 {
 Node<Type> * subtree = new Node<Type>(obj, this);
 d_children.push_back (subtree);
 }

Trees

● The implementations are, for the most part,
straightforward:

 template <typename Type>
 int Node<Type>::insert (const Type & obj)
 {
 Node<Type> * subtree = new Node<Type>(obj, this);
 d_children.push_back (subtree);
 }

● Why this as parameter to the constructor?

Trees

● Suppose we wanted to compute the size
(number of nodes) in the tree (say that we
added a method Node<Type>::size() const:

Trees

● Suppose we wanted to compute the size
(number of nodes) in the tree (say that we
added a method Node<Type>::size() const:

● Hopefully you recall the nice recursive definition
for a tree... So, that would seem to suggest
that size() could perfectly be a recursive
function! :

Trees

template <typename Type>
int Node<Type>::size() const
{
 int count = 1; // counting this one

 for (list<Node<Type> *>::iterator ch = d_children.begin();
 ch != d_children.end();
 ++ch)
 {
 count += c->size();
 }

 return count;
}

Trees

● Side note: Iterators in the STL (I'm using the
STL's linked list class template, std::list) are
designed to have a syntax similar to pointers.

● They take advantage of operator overloading,
which allows us to define functions and
methods that will be invoked when we use a
certain operator with an object of that class.

Trees

● So, the loop

 for (list<Node<Type> *>::iterator ch = d_children.begin();
 ch != d_children.end();
 ++ch)

is nothing more than a “disguised” version of:

 for (list_iterator ch = d_children.begin();
 !ch.at_end();
 ch.advance())

Trees

● So, the loop

 for (list<Node<Type> *>::iterator ch = d_children.begin();
 ch != d_children.end();
 ++ch)

is nothing more than a “disguised” version of:

 for (list_iterator ch = d_children.begin();
 !ch.at_end();
 ch.advance())

● The method advance(), for instance, is called
operator++() — and it's invoked when using ++

Trees

● The at_end() issue is a little bit trickier — since
iterators are like pointers, class list also returns
an iterator pointing to one-past-end, so that with
the help from overloaded operators == and !=
(functions operator==() and operator!=()), we
can check if we are already outside the range.

Trees

● Closing the parenthesis ... Say now that we
want to obtain the height of the tree.

Trees

● Closing the parenthesis ... Say now that we
want to obtain the height of the tree.

● Recursion again ... Right?

Trees

● And since our next topic is tree traversals...
How are these recursive functions traversing
the tree? (i.e., in what order are they visiting
the nodes of the tree?)

Trees

● And since our next topic is tree traversals...
How are these recursive functions traversing
the tree? (i.e., in what order are they visiting
the nodes of the tree?)

● We'll answer this on the board (and no, the
answer is not in the next slides, so if you feel
like taking notes, by all means do ...)

Trees

● Recursive implementations typically lead to a
depth-first traversal:
● We first go as deep as possible below each node

before visiting any sibling node.

Trees

● Recursive implementations typically lead to a
depth-first traversal:
● We first go as deep as possible below each node

before visiting any sibling node.

● The other typical traversal is breadth-first — all
siblings are visited first, before moving to the
next depth.

Trees

● Graphically, depth-first traversal goes like this:

Trees

● Breadth-first traversal:

Trees

● Breadth-first traversal can be implemented with
a queue (a FIFO data structure)

Trees

● Breadth-first traversal can be implemented with
a queue (a FIFO data structure)

● Depth-first requires a stack (LIFO)

Trees

● Breadth-first traversal can be implemented with
a queue (a FIFO data structure)

● Depth-first requires a stack (LIFO)
● Huh?? Didn't we already see some depth-first

examples? We didn't use a stack

Trees

● Breadth-first traversal can be implemented with
a queue (a FIFO data structure)

● Depth-first requires a stack (LIFO)
● Huh?? Didn't we already see some depth-first

examples? We didn't use a stack — did we??

Trees

● Let's look at breadth-first traversal:
● We'll use a queue for the nodes (could be a queue

holding pointers to the nodes). The procedure is:

Trees

● Let's look at breadth-first traversal:
● We'll use a queue for the nodes (could be a queue

holding pointers to the nodes). The procedure is:
– Enqueue the root node.
– While the queue is not empty:

● Dequeue an element
● Enqueue all of the children of the just dequeued node

Trees

● Let's look at breadth-first traversal:
● We'll use a queue for the nodes (could be a queue

holding pointers to the nodes). The procedure is:
– Enqueue the root node.
– While the queue is not empty:

● Dequeue an element
● Enqueue all of the children of the just dequeued node

– Neat, huh?

Trees

● An important notion with depth-first traversals
comes from the observation that each node is
visited more than once:
● When in our way down to visit the children nodes,

and when we get back from each of the children.

Trees

● An important notion with depth-first traversals
comes from the observation that each node is
visited more than once:
● When in our way down to visit the children nodes,

and when we get back from each of the children.

● What if we require some processing for the
present node? When would we do it? On our
way down, or on our way back?

Trees

● This leads to the distinction between pre-order
and post-order depth-first traversals:
● Pre-order means that we first process the current

node, then move to the children.

Trees

● This leads to the distinction between pre-order
and post-order depth-first traversals:
● Pre-order means that we first process the current

node, then move to the children.
● Post-order means that we first process the children,

and then we process the current one.

Trees

● This leads to the distinction between pre-order
and post-order depth-first traversals:
● Pre-order means that we first process the current

node, then move to the children.
● Post-order means that we first process the children,

and then we process the current one.
– Later on (a few lectures from now), we'll see in-order

traversal — a notion that is only applicable for certain
types of trees.

Trees

● So, which one should we use? Or, if both are
necessary, when do we use each?

Trees

● What about the HTML rendering example?
● Breadth-first, or depth-first?

Trees

● What about the HTML rendering example?
● Breadth-first, or depth-first?

● Clearly depth-first: we need to know about how all
nested tags (the children/descendants) affect the
geometry of the containing tag.

Trees

● What about the HTML rendering example?
● Breadth-first, or depth-first?

● Clearly depth-first: we need to know about how all
nested tags (the children/descendants) affect the
geometry of the containing tag.

● So, pre-order or post-order?

Summary

● During today's class:
● We continued with topics on Trees
● Looked at some implementation approaches
● Investigated traversal strategies:

– Breadth-first (visit all siblings before descending)
– Depth-first (go as deep as possible before moving to the

next sibling)
● Pre-order traversal (process current node, then children)
● Post-order traversal (process all children, then current node)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

