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Binary Trees

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Binary Trees

● Today's class:
● We'll look at binary trees — definition and some 

properties and related concepts.
● Talk about its implementation.
● Look at the notions of perfect and complete binary 

trees.
– Implementing it with array storage.



  

Binary Trees

● The definition of a binary tree is quite 
straightforward:
● A tree with the structure constrained such that each 

node has exactly two children.
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Binary Trees

● The definition of a binary tree is quite 
straightforward:
● A tree with the structure constrained such that each 

node has exactly two children.
– Notice, exactly two children — not up to two children!

● Each child is either empty or another binary tree.
● Given this constraint, we can label 

the two children as left and right 
nodes or subtrees.



  

Binary Trees

● Examples of binary trees with five nodes:



  

Binary Trees

● Definition:  A full node is a node where both left 
and right sub-trees are non-empty trees:



  

Binary Trees

● Definition:  A full node is a node where both left 
and right sub-trees are non-empty trees:

    Full nodes          Leaf nodes          Neither



  

Binary Trees

● Definition:  An empty node or null sub-tree is a 
location where a new leaf node (or a sub-tree) 
could be inserted.



  

Binary Trees

● Definition:  An empty node or null sub-tree is a 
location where a new leaf node (or a sub-tree) 
could be inserted.
● Graphically, the missing branches.



  

Binary Trees

● Definition:  A full binary tree is a binary tree 
where each node is either a full node or a leaf 
node.



  

Binary Trees

● Definition:  A full binary tree is a binary tree 
where each node is either a full node or a leaf 
node.
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Binary Trees

● Implementing binary trees...
● Clearly, since these are specific (constrained) types 

of trees, we could use a normal implementation of a 
tree, and ensure that the constraints are always 
applied.
– Not a very interesting approach!

● Some of the aspects in the general implementation 
are there to meet the general requirements  (e.g., a 
linked list of children because we can have variable 
number of children).



  

Binary Trees

● Implementing binary trees...
● Why use a linked list if we know that we have 

exactly two child nodes?



  

Binary Trees

● Implementing binary trees...
● Why use a linked list if we know that we have 

exactly two child nodes?
– Not only that — we want to label those as left and right!
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Binary Trees

● Implementing binary trees...
● A better approach is, of course, having two named 

pointers (as in, two data members), left and right 
(well, or d_left, d_right, or whatever naming 
convention for data members).
– If a child node is absent (i.e., an empty node or null 

sub tree), we represent it with a null pointer in the ‑
corresponding child (left or right).



  

Binary Trees
template <typename Type>
class Binary_node
{
    Type d_element;
    Binary_node<Type> * d_parent;
    Binary_node<Type> * d_left;
    Binary_node<Type> * d_right;

public:
    Binary_node (const Type & obj);

    Type retrieve() const;
    Node<Type> * left() const;
    Node<Type> * right() const;

    // etc.
};
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Binary Trees

● A small caveat ....
● The code for traversal (e.g., recursive functions or 

recursive node's methods) can become a bit more 
“verbose” than in the case of general trees.

● If a pointer to a child node is null, we're not allowed 
to dereference it.
– And since each of the two pointers has its own name, we 

have to explicitly check them (as in, individually!)
● For example, here's what a recursive size() method 

could look like...



  

Binary Trees
template <typename Type>
int Binary_node<Type>::size() const
{
    int count = 1;   // this one
    if (left() != NULL)
    {
        count += left()->size();
    }

    if (right() != NULL)
    {
        count += right()->size();
    }

    return count;
}



  

Binary Trees

● In this particular example, a recursive function 
(standalone function, as opposed to a method) 
would be simpler with respect to that detail....



  

Binary Trees
template <typename Type>
int size (const Binary_node<Type> * node)
{
    if (node == NULL)
    {
        return 0;
    }

    return 1 + size(node->left()) + size(node->right());
}



  

Binary Trees
template <typename Type>
int size (const Binary_node<Type> * node)
{
    if (node == NULL)
    {
        return 0;
    }

    return 1 + size(node->left()) + size(node->right());
}

Key difference: we're not dereferencing the null pointer — we 
pass it to a function, and that function compares the pointer 
against NULL.  In the other case, simply invoking 
node−>size() when node is null invokes undefined behaviour.



  

Binary Trees

● Let's look at perfect binary trees...



  

Binary Trees

● A perfect binary tree of height h is a binary tree 
where:
● All leaf nodes have the same depth h.
● All other nodes are full.



  

Binary Trees

● A perfect binary tree of height h is a binary tree 
where:
● All leaf nodes have the same depth h.
● All other nodes are full.
● Here's an example of a perfect binary tree:



  

Binary Trees

● Why do we need both conditions?
● All leaf nodes have the same depth h.
● All other nodes are full.

● Can you give counter-examples showing how 
each condition individually fails to describe this 
idea of a “maxed-out” tree?



  

Binary Trees

● Here's a (rather overkill) couple of examples of 
a tree where all leaf nodes are at the same 
depth:



  

Binary Trees

● Here's an example where all the non-leaf nodes 
are full:



  

Binary Trees

● We also have a nice recursive definition:
● A binary tree of height 0 is perfect.
● A binary tree with height h > 0 is perfect if both 

sub trees are perfect binary trees of height ‑ h−1.



  

Binary Trees

● From this definition, we can prove, for example, 
that a perfect binary tree of height h has 2h+1−1 
nodes.



  

Binary Trees

● From this definition, we can prove, for example, 
that a perfect binary tree of height h has 2h+1−1 
nodes.

● We'll proceed by induction on h.  So, we have 
to prove that:  (1) The statement is true for 
h = 0;  and (2) that if the statement is true for h, 
that implies that it is also true for h+1



  

Binary Trees

● Base case is trivial;  a tree of height 0 is perfect 
by definition, and it is just a single (root) node.  
Thus, the formula matches (20+1−1 = 1)



  

Binary Trees

● For the induction step, we assume (induction 
hypothesis) that the statement is true for h, and 
consider a tree of height h+1.
● By definition, both sub-trees of a perfect tree of 

height h+1 are perfect trees of height h.
● And by induction hypothesis, each of those perfect 

sub-trees have 2h+1−1 nodes.
● Thus, we have in total the root node + twice the 

above number: 1 + 2(2h+1−1) = 2h+2 − 1



  

Binary Trees

● Graphically, the induction step goes like this:

Total number of nodes:  (2h + 1 – 1) + 1 + (2h + 1 – 1) = 2h + 2 – 1



  

Binary Trees

● As a direct consequence of this, the height of a 
perfect binary tree of n nodes is Θ(log n):

n= 2h+1 − 1 ⇒ h= lg (n+1) − 1 = Θ( log n)



  

Binary Trees

● As a direct consequence of this, the height of a 
perfect binary tree of n nodes is Θ(log n):

● This is interesting — many operations with 
trees have a run time that goes with the depth 
of some path within the tree;  if we have a 
perfect tree (or something close to it), we know 
that those operations run in O(log n).

n= 2h+1 − 1 ⇒ h= lg (n+1) − 1 = Θ( log n)



  

Binary Trees

● Now, what could be close to a perfect binary 
tree?



  

Binary Trees

● Now, what could be close to a perfect binary 
tree?
● One of the limitations with perfect binary trees is 

that the number of nodes is always n = 2k−1.
● It would be nice to have something similar, but 

defined for all values of n.



  

Binary Trees

● Definition (informal):  A complete binary tree is 
a binary tree that is filled at each depth from left 
to right  (sort of filled in the same order as a 
breadth-first traversal).
● That is, we are not allowed insertions at arbitrary 

positions!
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Binary Trees

● Definition (informal):  A complete binary tree is 
a binary tree that is filled at each depth from left 
to right  (sort of filled in the same order as a 
breadth-first traversal).
● That is, we are not allowed insertions at arbitrary 

positions!
● Also, removals are only allowed from the “last” 

position.

● This is could be seen like a perfect tree with the 
deepest level not full, but filled contiguously 
from left to right.



  

Binary Trees

● Definition – recursive:
● A binary tree with height 0 is a complete binary tree.
● A complete binary tree of height h > 0 is a binary 

tree where either:
– The left sub-tree is a complete tree of height h−1 and the 

right sub-tree is a perfect tree of height h−2, or
– The left sub-tree is a perfect tree of height h−1 and the 

right sub-tree is a complete tree of height h−1.



  

Binary Trees

● Graphically:



  

Binary Trees

● The very interesting aspect of a complete 
binary tree is that we can efficiently store it 
using an array!



  

Binary Trees

● The very interesting aspect of a complete 
binary tree is that we can efficiently store it 
using an array!
● We traverse the tree in breadth-first order, placing 

the entries into the array



  

Binary Trees

● We notice that insertions and removals can 
only be done at the end of the array  (not a bad 
thing — quite the contrary, if we think about it!)



  

Binary Trees

● Ok, but we could have done this with any other 
type of trees, right?
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Binary Trees

● Ok, but we could have done this with any other 
type of trees, right?
● The problem would be:  how do we efficiently 

access the nodes?  (e.g., given a node, how do we 
access its children?  Its parent? etc.)

● With binary trees, the “fixed” structure of each node 
having exactly two children yields a nice and simple 
formula to relate these!
– At each depth, there are twice as many nodes as in the 

previous depth!



  

Binary Trees

● For the formula to work, we have use 1 as the 
first subscript (we could look at it as we leave 
the first entry of the array unused).

● With this, we have:
● The children of node at index k are the nodes at 

index 2k (left child) and 2k+1 (right child).
● The parent of node at index k is at index k    2÷



  

Binary Trees

● For example, node 10, at index 5, has its 
children, 13 and 23, at indices 10 and 11

0   1    2    3    4   5    6   7    8   9   10  11  12 13  14 15  16



  

Binary Trees

● For example, node 10, at index 5, has its 
children, 13 and 23, at indices 10 and 11

● Its parent, node 9, is at index 5    2  =  2

0   1    2    3    4   5    6   7    8   9   10  11  12 13  14 15  16

÷



  

Binary Trees

● Back to our “why is this only for complete binary 
trees” case ... 



  

Binary Trees

● Back to our “why is this only for complete binary 
trees” case ... 

● Again, we could ask:  why can't we do this with 
any binary tree?  (we agree that with a general 
tree, efficient access to children and parent is a 
problem).  But any binary tree does have the 
structure to facilitate this.



  

Binary Trees

● The problem with storing an arbitrary binary 
tree using an array is the inefficiency in memory 
usage.



  

Binary Trees

● This tree has 12 nodes, and requires an array 
of 32 elements.



  

Binary Trees

● This tree has 12 nodes, and requires an array 
of 32 elements.
● Adding just one extra node, as a child of node K 

doubles the required memory for the array!



  

Binary Trees

● The worst-case storage requirement for storing 
an arbitrary binary tree of n nodes is Θ(2n)
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● The worst-case storage requirement for storing 
an arbitrary binary tree of n nodes is Θ(2n)
● Worst-case happens if the elements form a linear 

arrangement  (i.e., every node has only one child)
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(why exactly is it exponential in n?)



  

Binary Trees

● The worst-case storage requirement for storing 
an arbitrary binary tree of n nodes is Θ(2n)
● Worst-case happens if the elements form a linear 

arrangement  (i.e., every node has only one child)

(why exactly is it exponential in n?)

● For this particular case, the number of nodes n 
happens to be the height of the tree, leading to 
2n+1−1 nodes if it was a perfect tree  (and a 
complete tree has at least half that many)



  

Summary

● During today's lesson, we discussed:
● Binary trees

– Definition
– Some of its properties and related concepts
– Discussed some aspects of their implementation

● Perfect binary trees
● Complete binary trees

– Implementing them in terms of an array!
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