

Binary Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Binary Trees

Standard reminder to set phones to
silent/vibrate mode, please!

Binary Trees

● Today's class:
● We'll look at binary trees — definition and some

properties and related concepts.
● Talk about its implementation.
● Look at the notions of perfect and complete binary

trees.
– Implementing it with array storage.

Binary Trees

● The definition of a binary tree is quite
straightforward:
● A tree with the structure constrained such that each

node has exactly two children.

Binary Trees

● The definition of a binary tree is quite
straightforward:
● A tree with the structure constrained such that each

node has exactly two children.
– Notice, exactly two children — not up to two children!

Binary Trees

● The definition of a binary tree is quite
straightforward:
● A tree with the structure constrained such that each

node has exactly two children.
– Notice, exactly two children — not up to two children!

● Each child is either empty or another binary tree.

Binary Trees

● The definition of a binary tree is quite
straightforward:
● A tree with the structure constrained such that each

node has exactly two children.
– Notice, exactly two children — not up to two children!

● Each child is either empty or another binary tree.
● Given this constraint, we can label

the two children as left and right
nodes or subtrees.

Binary Trees

● Examples of binary trees with five nodes:

Binary Trees

● Definition: A full node is a node where both left
and right sub-trees are non-empty trees:

Binary Trees

● Definition: A full node is a node where both left
and right sub-trees are non-empty trees:

 Full nodes Leaf nodes Neither

Binary Trees

● Definition: An empty node or null sub-tree is a
location where a new leaf node (or a sub-tree)
could be inserted.

Binary Trees

● Definition: An empty node or null sub-tree is a
location where a new leaf node (or a sub-tree)
could be inserted.
● Graphically, the missing branches.

Binary Trees

● Definition: A full binary tree is a binary tree
where each node is either a full node or a leaf
node.

Binary Trees

● Definition: A full binary tree is a binary tree
where each node is either a full node or a leaf
node.

Binary Trees

● Implementing binary trees...

Binary Trees

● Implementing binary trees...
● Clearly, since these are specific (constrained) types

of trees, we could use a normal implementation of a
tree, and ensure that the constraints are always
applied.

Binary Trees

● Implementing binary trees...
● Clearly, since these are specific (constrained) types

of trees, we could use a normal implementation of a
tree, and ensure that the constraints are always
applied.
– Not a very interesting approach!

Binary Trees

● Implementing binary trees...
● Clearly, since these are specific (constrained) types

of trees, we could use a normal implementation of a
tree, and ensure that the constraints are always
applied.
– Not a very interesting approach!

● Some of the aspects in the general implementation
are there to meet the general requirements (e.g., a
linked list of children because we can have variable
number of children).

Binary Trees

● Implementing binary trees...
● Why use a linked list if we know that we have

exactly two child nodes?

Binary Trees

● Implementing binary trees...
● Why use a linked list if we know that we have

exactly two child nodes?
– Not only that — we want to label those as left and right!

Binary Trees

● Implementing binary trees...
● A better approach is, of course, having two named

pointers (as in, two data members), left and right
(well, or d_left, d_right, or whatever naming
convention for data members).

Binary Trees

● Implementing binary trees...
● A better approach is, of course, having two named

pointers (as in, two data members), left and right
(well, or d_left, d_right, or whatever naming
convention for data members).
– If a child node is absent (i.e., an empty node or null

sub tree), we represent it with a null pointer in the ‑
corresponding child (left or right).

Binary Trees
template <typename Type>
class Binary_node
{
 Type d_element;
 Binary_node<Type> * d_parent;
 Binary_node<Type> * d_left;
 Binary_node<Type> * d_right;

public:
 Binary_node (const Type & obj);

 Type retrieve() const;
 Node<Type> * left() const;
 Node<Type> * right() const;

 // etc.
};

Binary Trees

● A small caveat

Binary Trees

● A small caveat
● The code for traversal (e.g., recursive functions or

recursive node's methods) can become a bit more
“verbose” than in the case of general trees.

Binary Trees

● A small caveat
● The code for traversal (e.g., recursive functions or

recursive node's methods) can become a bit more
“verbose” than in the case of general trees.

● If a pointer to a child node is null, we're not allowed
to dereference it.

Binary Trees

● A small caveat
● The code for traversal (e.g., recursive functions or

recursive node's methods) can become a bit more
“verbose” than in the case of general trees.

● If a pointer to a child node is null, we're not allowed
to dereference it.
– And since each of the two pointers has its own name, we

have to explicitly check them (as in, individually!)

Binary Trees

● A small caveat
● The code for traversal (e.g., recursive functions or

recursive node's methods) can become a bit more
“verbose” than in the case of general trees.

● If a pointer to a child node is null, we're not allowed
to dereference it.
– And since each of the two pointers has its own name, we

have to explicitly check them (as in, individually!)
● For example, here's what a recursive size() method

could look like...

Binary Trees
template <typename Type>
int Binary_node<Type>::size() const
{
 int count = 1; // this one
 if (left() != NULL)
 {
 count += left()->size();
 }

 if (right() != NULL)
 {
 count += right()->size();
 }

 return count;
}

Binary Trees

● In this particular example, a recursive function
(standalone function, as opposed to a method)
would be simpler with respect to that detail....

Binary Trees
template <typename Type>
int size (const Binary_node<Type> * node)
{
 if (node == NULL)
 {
 return 0;
 }

 return 1 + size(node->left()) + size(node->right());
}

Binary Trees
template <typename Type>
int size (const Binary_node<Type> * node)
{
 if (node == NULL)
 {
 return 0;
 }

 return 1 + size(node->left()) + size(node->right());
}

Key difference: we're not dereferencing the null pointer — we
pass it to a function, and that function compares the pointer
against NULL. In the other case, simply invoking
node−>size() when node is null invokes undefined behaviour.

Binary Trees

● Let's look at perfect binary trees...

Binary Trees

● A perfect binary tree of height h is a binary tree
where:
● All leaf nodes have the same depth h.
● All other nodes are full.

Binary Trees

● A perfect binary tree of height h is a binary tree
where:
● All leaf nodes have the same depth h.
● All other nodes are full.
● Here's an example of a perfect binary tree:

Binary Trees

● Why do we need both conditions?
● All leaf nodes have the same depth h.
● All other nodes are full.

● Can you give counter-examples showing how
each condition individually fails to describe this
idea of a “maxed-out” tree?

Binary Trees

● Here's a (rather overkill) couple of examples of
a tree where all leaf nodes are at the same
depth:

Binary Trees

● Here's an example where all the non-leaf nodes
are full:

Binary Trees

● We also have a nice recursive definition:
● A binary tree of height 0 is perfect.
● A binary tree with height h > 0 is perfect if both

sub trees are perfect binary trees of height ‑ h−1.

Binary Trees

● From this definition, we can prove, for example,
that a perfect binary tree of height h has 2h+1−1
nodes.

Binary Trees

● From this definition, we can prove, for example,
that a perfect binary tree of height h has 2h+1−1
nodes.

● We'll proceed by induction on h. So, we have
to prove that: (1) The statement is true for
h = 0; and (2) that if the statement is true for h,
that implies that it is also true for h+1

Binary Trees

● Base case is trivial; a tree of height 0 is perfect
by definition, and it is just a single (root) node.
Thus, the formula matches (20+1−1 = 1)

Binary Trees

● For the induction step, we assume (induction
hypothesis) that the statement is true for h, and
consider a tree of height h+1.
● By definition, both sub-trees of a perfect tree of

height h+1 are perfect trees of height h.
● And by induction hypothesis, each of those perfect

sub-trees have 2h+1−1 nodes.
● Thus, we have in total the root node + twice the

above number: 1 + 2(2h+1−1) = 2h+2 − 1

Binary Trees

● Graphically, the induction step goes like this:

Total number of nodes: (2h + 1 – 1) + 1 + (2h + 1 – 1) = 2h + 2 – 1

Binary Trees

● As a direct consequence of this, the height of a
perfect binary tree of n nodes is Θ(log n):

n= 2h+1 − 1 ⇒ h= lg (n+1) − 1 = Θ(log n)

Binary Trees

● As a direct consequence of this, the height of a
perfect binary tree of n nodes is Θ(log n):

● This is interesting — many operations with
trees have a run time that goes with the depth
of some path within the tree; if we have a
perfect tree (or something close to it), we know
that those operations run in O(log n).

n= 2h+1 − 1 ⇒ h= lg (n+1) − 1 = Θ(log n)

Binary Trees

● Now, what could be close to a perfect binary
tree?

Binary Trees

● Now, what could be close to a perfect binary
tree?
● One of the limitations with perfect binary trees is

that the number of nodes is always n = 2k−1.
● It would be nice to have something similar, but

defined for all values of n.

Binary Trees

● Definition (informal): A complete binary tree is
a binary tree that is filled at each depth from left
to right (sort of filled in the same order as a
breadth-first traversal).
● That is, we are not allowed insertions at arbitrary

positions!

Binary Trees

● Definition (informal): A complete binary tree is
a binary tree that is filled at each depth from left
to right (sort of filled in the same order as a
breadth-first traversal).
● That is, we are not allowed insertions at arbitrary

positions!
● Also, removals are only allowed from the “last”

position.

Binary Trees

● Definition (informal): A complete binary tree is
a binary tree that is filled at each depth from left
to right (sort of filled in the same order as a
breadth-first traversal).
● That is, we are not allowed insertions at arbitrary

positions!
● Also, removals are only allowed from the “last”

position.

● This is could be seen like a perfect tree with the
deepest level not full, but filled contiguously
from left to right.

Binary Trees

● Definition – recursive:
● A binary tree with height 0 is a complete binary tree.
● A complete binary tree of height h > 0 is a binary

tree where either:
– The left sub-tree is a complete tree of height h−1 and the

right sub-tree is a perfect tree of height h−2, or
– The left sub-tree is a perfect tree of height h−1 and the

right sub-tree is a complete tree of height h−1.

Binary Trees

● Graphically:

Binary Trees

● The very interesting aspect of a complete
binary tree is that we can efficiently store it
using an array!

Binary Trees

● The very interesting aspect of a complete
binary tree is that we can efficiently store it
using an array!
● We traverse the tree in breadth-first order, placing

the entries into the array

Binary Trees

● We notice that insertions and removals can
only be done at the end of the array (not a bad
thing — quite the contrary, if we think about it!)

Binary Trees

● Ok, but we could have done this with any other
type of trees, right?

Binary Trees

● Ok, but we could have done this with any other
type of trees, right?
● The problem would be: how do we efficiently

access the nodes? (e.g., given a node, how do we
access its children? Its parent? etc.)

Binary Trees

● Ok, but we could have done this with any other
type of trees, right?
● The problem would be: how do we efficiently

access the nodes? (e.g., given a node, how do we
access its children? Its parent? etc.)

● With binary trees, the “fixed” structure of each node
having exactly two children yields a nice and simple
formula to relate these!

Binary Trees

● Ok, but we could have done this with any other
type of trees, right?
● The problem would be: how do we efficiently

access the nodes? (e.g., given a node, how do we
access its children? Its parent? etc.)

● With binary trees, the “fixed” structure of each node
having exactly two children yields a nice and simple
formula to relate these!
– At each depth, there are twice as many nodes as in the

previous depth!

Binary Trees

● For the formula to work, we have use 1 as the
first subscript (we could look at it as we leave
the first entry of the array unused).

● With this, we have:
● The children of node at index k are the nodes at

index 2k (left child) and 2k+1 (right child).
● The parent of node at index k is at index k 2÷

Binary Trees

● For example, node 10, at index 5, has its
children, 13 and 23, at indices 10 and 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Binary Trees

● For example, node 10, at index 5, has its
children, 13 and 23, at indices 10 and 11

● Its parent, node 9, is at index 5 2 = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

÷

Binary Trees

● Back to our “why is this only for complete binary
trees” case ...

Binary Trees

● Back to our “why is this only for complete binary
trees” case ...

● Again, we could ask: why can't we do this with
any binary tree? (we agree that with a general
tree, efficient access to children and parent is a
problem). But any binary tree does have the
structure to facilitate this.

Binary Trees

● The problem with storing an arbitrary binary
tree using an array is the inefficiency in memory
usage.

Binary Trees

● This tree has 12 nodes, and requires an array
of 32 elements.

Binary Trees

● This tree has 12 nodes, and requires an array
of 32 elements.
● Adding just one extra node, as a child of node K

doubles the required memory for the array!

Binary Trees

● The worst-case storage requirement for storing
an arbitrary binary tree of n nodes is Θ(2n)

Binary Trees

● The worst-case storage requirement for storing
an arbitrary binary tree of n nodes is Θ(2n)
● Worst-case happens if the elements form a linear

arrangement (i.e., every node has only one child)

Binary Trees

● The worst-case storage requirement for storing
an arbitrary binary tree of n nodes is Θ(2n)
● Worst-case happens if the elements form a linear

arrangement (i.e., every node has only one child)

(why exactly is it exponential in n?)

Binary Trees

● The worst-case storage requirement for storing
an arbitrary binary tree of n nodes is Θ(2n)
● Worst-case happens if the elements form a linear

arrangement (i.e., every node has only one child)

(why exactly is it exponential in n?)

● For this particular case, the number of nodes n
happens to be the height of the tree, leading to
2n+1−1 nodes if it was a perfect tree (and a
complete tree has at least half that many)

Summary

● During today's lesson, we discussed:
● Binary trees

– Definition
– Some of its properties and related concepts
– Discussed some aspects of their implementation

● Perfect binary trees
● Complete binary trees

– Implementing them in terms of an array!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

