

Binary Search Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Binary Search Trees

● Previously, on ECE-250 ...
● We discussed trees (the general type) and their

implementations.
– We looked at traversals — pre-order and post order.‑

● We saw binary trees, a specific type of tree, and its
implementation details.
– Not the same implementation as for general trees!

● An important detail was that trees are used to store
hierarchically ordered data.

Binary Search Trees

● For today, we have a slight plot twist!
● We'll look at binary search trees and some related

concepts
– In particular, we'll look at in-order traversal.

● We'll look at some of the operations on them and
how to implement them.

Binary Search Trees

● For today, we have a slight plot twist!
● We'll look at binary search trees and some related

concepts
– In particular, we'll look at in-order traversal.

● We'll look at some of the operations on them and
how to implement them.

● The plot twist being that these types of trees store
linearly (totally) ordered data!

Binary Search Trees

● For a brief context/rationale, let's recall binary
search:
● If we have elements stored in ascending order in an

array, then we check the middle element:

Binary Search Trees

● For a brief context/rationale, let's recall binary
search:
● If we have elements stored in ascending order in an

array, then we check the middle element:
● Under the “standard” assumption that we write the

elements from left to right, we have that for each
position:
– Every element at the left of that position is less than the

one at that position.
– Every element at the right of that position is greater than

the element at that position.

Binary Search Trees

● For a brief context/rationale, let's recall binary
search:
● That's precisely what allows us to efficiently search

for values — check at the middle, and if the value
we're searching is less than what we have there,
then take the left chunk; greater than, we take the
right chunk; and of course, if equal, then we're
done.

Binary Search Trees

● For a brief context/rationale, let's recall binary
search:
● Hmmm ... left ... right ... I wonder what that sounds

like

Binary Search Trees

● Coming back to binary search in an array...
● What if we're trying to keep a sequence of ordered

values? That is, what if we need to do insertions
and removals?
– Searching would still be efficient (logarithmic time, since

binary search is feasible), but insertions and removals
are very inefficient (linear time).

Binary Search Trees

● Coming back to binary search in an array...
● What if we're trying to keep a sequence of ordered

values? That is, what if we need to do insertions
and removals?
– Searching would still be efficient (logarithmic time, since

binary search is feasible), but insertions and removals
are very inefficient (linear time).

● We won't even ask «what if we use a linked list?»
– Been there, chosen NOT to do that — can't do binary

search in a linked list.

Binary Search Trees

● So....
● We tried arrays — no good
● We tried linked lists — sorry, no good either

● The only two things we haven't tried (from the
data structures we've seen) are hash tables
and binary trees, right?
● Hash tables wouldn't even come close to a viable

option — why?

Binary Search Trees

● So.... we try binary trees!
● After all, we have left and right sub-trees — what if

we add the constraint that every value in the left
sub-tree is less than the value at the given node,
and every value in the right sub-tree is greater than
the given node?
– Let's say that we're making the implicit assumption of no

duplicate data (i.e., no two values are the same)

Binary Search Trees

● Ok, question — can we enforce that constraint?
 (say, when inserting values?)

Binary Search Trees

● Ok, question — can we enforce that constraint?
(say, when inserting values?)
● So, that's not too bad — if we think in terms of a

recursive function or method: if the value to be
inserted is less than the value at the root, just pass
the value to the left subtree to be inserted there,
and if greater than, pass it to the right subtree.

● Obviously, the base case is reached at leaf nodes
(in which case, a new node is created/allocated and
we're done)

Binary Search Trees

● But if we can enforce that constraint with
insertions, then we're done — right? (why?)

Binary Search Trees

● Summarizing — this is essentially the definition
of a binary search tree. Formally written: A
(non-empty) binary search tree is a binary tree
where:
● The left sub-tree (if any) is a binary search tree and

all elements are less than the root element; and
● The right sub-tree (if any) is a binary search tree

and all elements are greater than the root element.

Binary Search Trees

● Normally, it would be a shocking surprise
seeing that we want to store linearly ordered
data in a tree... But I already spoiled that
surprise, right? So, no plot twist at this point !

● The interesting aspect is that it's not the
hierarchical nature what's of interest now, but
the “geometry” and the properties that derive
from the tree structure that are useful for this
purpose!

Binary Search Trees

● And yes, as soon as we store the values in a
binary tree, we could accuse them of being
hierarchical!
● True enough — they follow the hierarchy imposed

by the storage in the tree. But this is an artificially
imposed hierarchy — it's part of the storage
structure, and not part of the data.

Binary Search Trees

● Our visual idea of these binary search trees
could be something like this:

Binary Search Trees

● Our visual idea of these binary search trees
could be something like this:

● Of course, each of the sub-trees must be binary
search trees themselves!

Binary Search Trees

● Other examples of binary search trees:

Binary Search Trees

● So, let's rewind a little bit, all the way until our
class back in 2012-01-18, discussing
containers and relations...

Binary Search Trees

● The point being — some of the operations that
we may want to do on linearly ordered data
(especially sorted data) could be:
● Find the smallest and largest elements.
● Iterate over all the elements, in order.
● Find the next and previous elements to a given

value, which may or may not be in the container.

Binary Search Trees

● The point being — some of the operations that
we may want to do on linearly ordered data
(especially sorted data) could be:
● Find the smallest and largest elements.
● Iterate over all the elements, in order.
● Find the next and previous elements to a given

value, which may or may not be in the container.

● Can we do these in a binary search tree?

Binary Search Trees

● Let's try the first one — find the smallest and
largest elements in the tree (easy, right?)

Binary Search Trees

● Would that work for a tree that is completely
unbalanced, and that has no left sub-tree right
from the root node?

Binary Search Trees

● What about for this one?

Binary Search Trees

● Next — how do we iterate (for example, print)
the elements in order?

Binary Search Trees

● Next — how do we iterate (for example, print)
the elements in order?
● Notice that this involves visiting every element in

the tree — suggesting a tree traversal strategy...

Binary Search Trees

● Next — how do we iterate (for example, print)
the elements in order?
● Notice that this involves visiting every element in

the tree — suggesting a tree traversal strategy...
● So, which traversal strategy would work here?

Binary Search Trees

● Next — how do we iterate (for example, print)
the elements in order?
● Notice that this involves visiting every element in

the tree — suggesting a tree traversal strategy...
● So, which traversal strategy would work here?

– Breadth-first?

Binary Search Trees

● Next — how do we iterate (for example, print)
the elements in order?
● Notice that this involves visiting every element in

the tree — suggesting a tree traversal strategy...
● So, which traversal strategy would work here?

– Breadth-first? No way — right?

Binary Search Trees

● Next — how do we iterate (for example, print)
the elements in order?
● Notice that this involves visiting every element in

the tree — suggesting a tree traversal strategy...
● So, which traversal strategy would work here?

– Breadth-first? No way — right?
– Depth-first — pre-order? post-order?

Binary Search Trees

● We can see that neither pre- nor post-order
work for this task! Simple counter-example:

Pre-order: 2 – 1 – 3

Post-order: 1 – 3 – 2

2

1

2

3

Binary Search Trees

● We'll discuss in class the approach to solve
this!

Binary Search Trees

● Next — find the next and previous elements to
a given value, which may or may not be in the
container.

Binary Search Trees

● Next — find the next and previous elements to
a given value, which may or may not be in the
container.
● Let's start with an “easier” version of the above:

let's try to find a given value (or determine that it
isn't in the container).

Binary Search Trees

● An example — let's find 50, 21, 65, 15, 45:

Binary Search Trees

● Ok, now the tricky one — find the first value
(next in order) after 20, first value before 80:
● Any ideas?

Binary Search Trees

● An interesting detail — when searching, we're
traversing a path (since we're always moving to
one of the children); since the length of the
longest path is the height h of the tree, then
finding an element takes O(h).
● And since h = lg n (where n is the number of

elements), then we're good

Binary Search Trees

● An interesting detail — when searching, we're
traversing a path (since we're always moving to
one of the children); since the length of the
longest path is the height h of the tree, then
finding an element takes O(h).
● And since h = lg n (where n is the number of

elements), then we're good — right?

Binary Search Trees

● An interesting detail — when searching, we're
traversing a path (since we're always moving to
one of the children); since the length of the
longest path is the height h of the tree, then
finding an element takes O(h).
● And since h = lg n (where n is the number of

elements), then we're good — right?
● No, of course wrong! (why?)

Binary Search Trees

● Still, we saw that for perfect and complete
trees, the height is Θ(log n)

● We can't hope to get complete trees here
(why?), but maybe we'll be able to find things
that are “close” to it, or in any case, that exhibit
this same logarithmic behaviour for the height!

Binary Search Trees

● Still, we saw that for perfect and complete
trees, the height is Θ(log n)

● We can't hope to get complete trees here
(why?), but maybe we'll be able to find things
that are “close” to it, or in any case, that exhibit
this same logarithmic behaviour for the height!
● We'll see (not today) that the required attribute is

balance — if the tree is balanced, meaning that left
and right sub-trees are guaranteed to be close (with
respect to some measure such as number of
nodes), then we're good!

Binary Search Trees

● The remarkable detail is that there are indeed
techniques (we'll look at one of them) that allow
us to guarantee that a binary search tree is
always balanced.
● That's the real saver — if we couldn't guarantee

that, there would be no point in studying binary
search trees (since we would have no guarantee of
efficient — logarithmic time — operations)

Binary Search Trees

● How about inserting elements?
● Since this is really a sequential container (we're

storing linearly ordered data), we should have
push_front and push_back — right?

Binary Search Trees

● How about inserting elements?
● Since this is really a sequential container (we're

storing linearly ordered data), we should have
push_front and push_back — right?

● No, we notice that an element goes at its
corresponding position — we don't decide that it
goes at the beginning or at the end.

● So, what really makes sense is a single insert
operation that places the element at the correct
position in the tree!

Binary Search Trees

● Example: let's insert 20, 70, 30.

Binary Search Trees

● Last (and definitely not least!), we'll look at
removing elements.

● Unlike insertions, which are easy since we
always go down to a leaf node and insert on
one of its empty nodes, removals can happen
anywhere!

● We consider the three possible cases:
● The node is a leaf node.
● It has one child
● It has two children

Binary Search Trees

● In all three cases, we first have to locate the
node (this part is easy — we just saw the
searching procedure).

Binary Search Trees

● If the node being removed is a leaf node, the
operation is trivial — we just remove it (the
operation is trouble-free)

Binary Search Trees

● If the node being removed has one child, we
run into a little bit of trouble — removing the
node leaves a node (possibly an entire
sub tree) floating ...‑

Binary Search Trees

● If the node being removed has one child, we
run into a little bit of trouble — removing the
node leaves a node (possibly an entire
sub tree) floating ...‑

● However, if it is the only child, then we can
easily solve it — want to give it a try? (we'll
discuss the answer in class)

Binary Search Trees

● So, it looks like if the node being removed has
two children, then we run into a lot of trouble!
● And here too, we'll discuss the solution in class!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

