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Binary Search Trees

● Previously, on ECE-250 ... 
● We discussed trees (the general type) and their 

implementations.
– We looked at traversals — pre-order and post order.‑

● We saw binary trees, a specific type of tree, and its 
implementation details.
– Not the same implementation as for general trees!

● An important detail was that trees are used to store 
hierarchically ordered data.



  

Binary Search Trees

● For today, we have a slight plot twist! 
● We'll look at binary search trees and some related 

concepts
– In particular, we'll look at in-order traversal.

● We'll look at some of the operations on them and 
how to implement them.



  

Binary Search Trees

● For today, we have a slight plot twist! 
● We'll look at binary search trees and some related 

concepts
– In particular, we'll look at in-order traversal.

● We'll look at some of the operations on them and 
how to implement them.
 

● The plot twist being that these types of trees store 
linearly (totally) ordered data!



  

Binary Search Trees

● For a brief context/rationale, let's recall binary 
search:
● If we have elements stored in ascending order in an 

array, then we check the middle element:



  

Binary Search Trees

● For a brief context/rationale, let's recall binary 
search:
● If we have elements stored in ascending order in an 

array, then we check the middle element:
● Under the “standard” assumption that we write the 

elements from left to right, we have that for each 
position:
– Every element at the left of that position is less than the 

one at that position.
– Every element at the right of that position is greater than 

the element at that position.



  

Binary Search Trees

● For a brief context/rationale, let's recall binary 
search:
● That's precisely what allows us to efficiently search 

for values — check at the middle, and if the value 
we're searching is less than what we have there, 
then take the left chunk;  greater than, we take the 
right chunk;  and of course, if equal, then we're 
done.



  

Binary Search Trees

● For a brief context/rationale, let's recall binary 
search:
● Hmmm ... left ... right ...  I wonder what that sounds 

like .....



  

Binary Search Trees

● Coming back to binary search in an array...
● What if we're trying to keep a sequence of ordered 

values?  That is, what if we need to do insertions 
and removals?
– Searching would still be efficient (logarithmic time, since 

binary search is feasible), but insertions and removals 
are very inefficient  (linear time).



  

Binary Search Trees

● Coming back to binary search in an array...
● What if we're trying to keep a sequence of ordered 

values?  That is, what if we need to do insertions 
and removals?
– Searching would still be efficient (logarithmic time, since 

binary search is feasible), but insertions and removals 
are very inefficient  (linear time).
 

● We won't even ask «what if we use a linked list?»
– Been there, chosen NOT to do that — can't do binary 

search in a linked list.



  

Binary Search Trees

● So.... 
● We tried arrays — no good
● We tried linked lists — sorry, no good either

 

● The only two things we haven't tried (from the 
data structures we've seen) are hash tables 
and binary trees, right?
● Hash tables wouldn't even come close to a viable 

option — why?



  

Binary Search Trees

● So....  we try binary trees! 
● After all, we have left and right sub-trees — what if 

we add the constraint that every value in the left 
sub-tree is less than the value at the given node, 
and every value in the right sub-tree is greater than 
the given node?
– Let's say that we're making the implicit assumption of no 

duplicate data  (i.e., no two values are the same)



  

Binary Search Trees

● Ok, question — can we enforce that constraint? 
 (say, when inserting values?)



  

Binary Search Trees

● Ok, question — can we enforce that constraint? 
(say, when inserting values?)
● So, that's not too bad — if we think in terms of a 

recursive function or method:  if the value to be 
inserted is less than the value at the root, just pass 
the value to the left subtree to be inserted there, 
and if greater than, pass it to the right subtree.

● Obviously, the base case is reached at leaf nodes  
(in which case, a new node is created/allocated and 
we're done)



  

Binary Search Trees

● But if we can enforce that constraint with 
insertions, then we're done — right?  (why?)



  

Binary Search Trees

● Summarizing — this is essentially the definition 
of a binary search tree.  Formally written:  A 
(non-empty) binary search tree is a binary tree 
where:
● The left sub-tree (if any) is a binary search tree and 

all elements are less than the root element;  and
● The right sub-tree (if any) is a binary search tree 

and all elements are greater than the root element.



  

Binary Search Trees

● Normally, it would be a shocking surprise 
seeing that we want to store linearly ordered 
data in a tree...  But I already spoiled that 
surprise, right?   So, no plot twist at this point !

● The interesting aspect is that it's not the 
hierarchical nature what's of interest now, but 
the “geometry” and the properties that derive 
from the tree structure that are useful for this 
purpose!



  

Binary Search Trees

● And yes, as soon as we store the values in a 
binary tree, we could accuse them of being 
hierarchical!
● True enough — they follow the hierarchy imposed 

by the storage in the tree.  But this is an artificially 
imposed hierarchy — it's part of the storage 
structure, and not part of the data.



  

Binary Search Trees

● Our visual idea of these binary search trees 
could be something like this:



  

Binary Search Trees

● Our visual idea of these binary search trees 
could be something like this:

● Of course, each of the sub-trees must be binary 
search trees themselves!



  

Binary Search Trees

● Other examples of binary search trees:



  

Binary Search Trees

● So, let's rewind a little bit, all the way until our 
class back in 2012-01-18, discussing 
containers and relations...



  

Binary Search Trees

● The point being — some of the operations that 
we may want to do on linearly ordered data 
(especially sorted data) could be:
● Find the smallest and largest elements.
● Iterate over all the elements, in order.
● Find the next and previous elements to a given 

value, which may or may not be in the container.



  

Binary Search Trees

● The point being — some of the operations that 
we may want to do on linearly ordered data 
(especially sorted data) could be:
● Find the smallest and largest elements.
● Iterate over all the elements, in order.
● Find the next and previous elements to a given 

value, which may or may not be in the container.
 

● Can we do these in a binary search tree?



  

Binary Search Trees

● Let's try the first one — find the smallest and 
largest elements in the tree  (easy, right?)



  

Binary Search Trees

● Would that work for a tree that is completely 
unbalanced, and that has no left sub-tree right 
from the root node?



  

Binary Search Trees

● What about for this one?



  

Binary Search Trees

● Next — how do we iterate (for example, print) 
the elements in order?



  

Binary Search Trees

● Next — how do we iterate (for example, print) 
the elements in order?
● Notice that this involves visiting every element in 

the tree — suggesting a tree traversal strategy...
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Binary Search Trees

● Next — how do we iterate (for example, print) 
the elements in order?
● Notice that this involves visiting every element in 

the tree — suggesting a tree traversal strategy...
● So, which traversal strategy would work here?

– Breadth-first?



  

Binary Search Trees

● Next — how do we iterate (for example, print) 
the elements in order?
● Notice that this involves visiting every element in 

the tree — suggesting a tree traversal strategy...
● So, which traversal strategy would work here?

– Breadth-first?    No way — right?



  

Binary Search Trees

● Next — how do we iterate (for example, print) 
the elements in order?
● Notice that this involves visiting every element in 

the tree — suggesting a tree traversal strategy...
● So, which traversal strategy would work here?

– Breadth-first?    No way — right?
– Depth-first — pre-order?  post-order?



  

Binary Search Trees

● We can see that neither pre- nor post-order 
work for this task!   Simple counter-example:

Pre-order:  2 – 1 – 3              

Post-order:  1 – 3 – 2              

2

1

2

3



  

Binary Search Trees

● We'll discuss in class the approach to solve 
this!



  

Binary Search Trees

● Next — find the next and previous elements to 
a given value, which may or may not be in the 
container.



  

Binary Search Trees

● Next — find the next and previous elements to 
a given value, which may or may not be in the 
container.
● Let's start with an “easier” version of the above:  

let's try to find a given value  (or determine that it 
isn't in the container).



  

Binary Search Trees

● An example — let's find 50, 21, 65, 15, 45:



  

Binary Search Trees

● Ok, now the tricky one — find the first value 
(next in order) after 20, first value before 80:
● Any ideas?



  

Binary Search Trees

● An interesting detail — when searching, we're 
traversing a path (since we're always moving to 
one of the children);  since the length of the 
longest path is the height h of the tree, then 
finding an element takes O(h).
● And since h = lg n  (where n is the number of 

elements), then we're good
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● An interesting detail — when searching, we're 
traversing a path (since we're always moving to 
one of the children);  since the length of the 
longest path is the height h of the tree, then 
finding an element takes O(h).
● And since h = lg n  (where n is the number of 

elements), then we're good — right?



  

Binary Search Trees

● An interesting detail — when searching, we're 
traversing a path (since we're always moving to 
one of the children);  since the length of the 
longest path is the height h of the tree, then 
finding an element takes O(h).
● And since h = lg n  (where n is the number of 

elements), then we're good — right?
● No, of course wrong!  (why?)



  

Binary Search Trees

● Still, we saw that for perfect and complete 
trees, the height is Θ(log n)

● We can't hope to get complete trees here  
(why?), but maybe we'll be able to find things 
that are “close” to it, or in any case, that exhibit 
this same logarithmic behaviour for the height!



  

Binary Search Trees

● Still, we saw that for perfect and complete 
trees, the height is Θ(log n)

● We can't hope to get complete trees here  
(why?), but maybe we'll be able to find things 
that are “close” to it, or in any case, that exhibit 
this same logarithmic behaviour for the height!
● We'll see (not today) that the required attribute is 

balance — if the tree is balanced, meaning that left 
and right sub-trees are guaranteed to be close (with 
respect to some measure such as number of 
nodes), then we're good!



  

Binary Search Trees

● The remarkable detail is that there are indeed  
techniques (we'll look at one of them) that allow 
us to guarantee that a binary search tree is 
always balanced.
● That's the real saver — if we couldn't guarantee 

that, there would be no point in studying binary 
search trees (since we would have no guarantee of 
efficient — logarithmic time — operations)



  

Binary Search Trees

● How about inserting elements?
● Since this is really a sequential container (we're 

storing linearly ordered data), we should have 
push_front and push_back — right?



  

Binary Search Trees

● How about inserting elements?
● Since this is really a sequential container (we're 

storing linearly ordered data), we should have 
push_front and push_back — right?

● No, we notice that an element goes at its 
corresponding position — we don't decide that it 
goes at the beginning or at the end.

● So, what really makes sense is a single insert 
operation that places the element at the correct 
position in the tree!



  

Binary Search Trees

● Example:  let's insert 20, 70, 30.



  

Binary Search Trees

● Last (and definitely not least!), we'll look at 
removing elements.

● Unlike insertions, which are easy since we 
always go down to a leaf node and insert on 
one of its empty nodes, removals can happen 
anywhere!

● We consider the three possible cases:
● The node is a leaf node.
● It has one child
● It has two children



  

Binary Search Trees

● In all three cases, we first have to locate the 
node  (this part is easy — we just saw the 
searching procedure).



  

Binary Search Trees

● If the node being removed is a leaf node, the 
operation is trivial — we just remove it  (the 
operation is trouble-free)



  

Binary Search Trees

● If the node being removed has one child, we 
run into a little bit of trouble — removing the 
node leaves a node (possibly an entire 
sub tree) floating ...‑



  

Binary Search Trees

● If the node being removed has one child, we 
run into a little bit of trouble — removing the 
node leaves a node (possibly an entire 
sub tree) floating ...‑

● However, if it is the only child, then we can 
easily solve it — want to give it a try?  (we'll 
discuss the answer in class)



  

Binary Search Trees

● So, it looks like if the node being removed has 
two children, then we run into a lot of trouble!
● And here too, we'll discuss the solution in class!
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