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Binary Trees – Case-studies

● Today's class:
● We'll look at some examples / case-studies where 

trees play an important role as a useful/powerful 
tool.
– Binary expression trees and reverse-Polish notation.
– Huffman Trees  (for Optimal prefix code data 

compression)
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● Binary expression trees:
● Basic idea:  mathematical expressions involve 

exclusively binary operations (the exception being 
the unary minus — as in, −x, but that can always be 
expressed as 0 – x, resorting to the binary minus)

● So, an expression involving a certain binary 
operation on two sub-expressions can be 
represented by a binary tree where the root node 
represents the operation, and the child nodes 
represent the operands — possibly sub-trees to 
represent the sub-expressions.
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● Very simple example:
● The expression a + b would be represented as:

+

a b
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● If instead of b we had another expression, such as 
2×c, then we make it such that the right child is not 
a leaf node containing b, but a whole sub-tree 
representing the expression 2×c:
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● If instead of b we had another expression, such as 
2×c, then we make it such that the right child is not 
a leaf node containing b, but a whole sub-tree 
representing the expression 2×c:

+

a

+

a
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● Given the recursive nature of these expressions 
(an expression being a binary operation 
between two sub-expressions), we can extend 
the binary tree representation to expressions of 
arbitrary complexity.
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● Given the recursive nature of these expressions 
(an expression being a binary operation 
between two sub-expressions), we can extend 
the binary tree representation to expressions of 
arbitrary complexity.
● Internal nodes (always full nodes) store operations.
● Leaf nodes store literal values or variables.
● This is an ordered tree!  (subtraction and division 

are not commutative!)
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● Given the recursive nature of these expressions 
(an expression being a binary operation 
between two sub-expressions), we can extend 
the binary tree representation to expressions of 
arbitrary complexity.
● Internal nodes (always full nodes) store operations.
● Leaf nodes store literal values or variables.
● This is an ordered tree!  (subtraction and division 

are not commutative!)
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● Example:  3 (4a + b + c) + d / 5 + (6 - e)
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● BTW ... How do we write (output) the contents 
of an expression tree?  (i.e., print the 
represented expression given the tree)
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● Breadth-first?  Depth-first?  Pre-, post-, or 
in order?‑



  

Binary Trees – Case-studies

● For the case of a very simple tree, it is clear 
that we want in-order traversal — we want 
operand1, operator, operand2  (in the simple 
example below, a, followed by +, followed by b)

+

a b
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● Does it work for this one as well?
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● Perhaps as interesting:  what is the output if we 
use post-order depth-first traversal?
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● The pattern is, both operands appear first, then 
the operation — does this remind you of 
something?

       3  4  a  ×  b  c  +  +  d  5  /  6  e  −  +  +
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● Hint:  Here's how the C++ compiler thinks that 
the CPU can do a + b:

movl -24(%rbp), %eax
movl -20(%rbp), %edx
addl %edx, %eax
 

● Again, this is Intel assembler, in AT&T-style 
notation — a little different than what you're used to 
see in ECE-222, but the principle being the same)
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● The principle being:  the CPU language 
requires that two operands to be loaded first 
into registers, then the instruction to perform 
the operation is issued.
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● The principle being:  the CPU language 
requires that two operands to be loaded first 
into registers, then the instruction to perform 
the operation is issued.
● So, it turns out that this notation “in reverse” could 

be useful after all!
● Compilers could use this tree to:

– Do manipulations (possibly simplifications) on the 
expression.

– Determine the sequence of assembly-level instructions.
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● BTW, this is known as reverse-Polish notation, 
co-creation of Edsger Dijkstra  (as a tool to 
optimize memory access by using a stack to 
perform operations).

(image courtesy of wikipedia.org)
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● Next, we'll look at Huffman Trees for data 
compression...
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● Basic idea:  Suppose we want to encode a 
sequence of “characters” that can only take one 
of four possible symbols.

● We need to encode these for transmission over 
a digital communications channel (or to store 
them in some digital storage medium)
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● Basic idea:  Suppose we want to encode a 
sequence of “characters” that can only take one 
of four possible symbols.

● We need to encode these for transmission over 
a digital communications channel (or to store 
them in some digital storage medium)
● How do we proceed?
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● The most straightforward approach is to assign 
two-bit codes to each symbol (with two bits, we 
have four possible combinations, so we use 
one combination for each symbol).

● For example, if the symbols are A,B,C,D, we 
could simply say A = 00, B = 01, C = 10, D = 11
● The transmitter and receiver agree on this 

encoding, and communication will be successful.
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● The sequence  ABAACAAD would be encoded 
as:  0001000010000011
● The receiver can decode the stream of bits because 

it knows that every two bits correspond to a 
character.
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● Of course, we'd like to optimize transmission 
speed, so we should minimize the amount of 
bits used, right?
● However, it seems like we have no choice, since 

there are four possible symbols, so we need two 
bits to represent each.
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● How about this twist:  what if we knew that the 
symbol A occurs 80% of the time in the 
sequences being transmitted, B occurs 10% of 
the time, and C, D occur 5% of the time each?

● Could we come up with a different encoding 
that would reduce the amount of bits to 
transmit?
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● How about this twist:  what if we knew that the 
symbol A occurs 80% of the time in the 
sequences being transmitted, B occurs 10% of 
the time, and C, D occur 5% of the time each?

● Could we come up with a different encoding 
that would reduce the amount of bits to 
transmit?
● Ok, let me give you a hint:  do all symbols have to 

encode to a fixed number of bits?  Could we use 
variable number of bits?
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● The trick is:  if we're going to use different 
amount of bits for different symbols, then we 
minimize the total number of bits by assigning 
fewer bits to the symbols that occur more 
frequently.

We can easily see why this is the case — if Nk is 
the number of times that symbol Sk appears, and 
|Sk| is the size (the number of bits) of symbol Sk, 
then the total number of bits is:

          N = N1|S1| + N2|S2| + N3|S3| + N4|S4|
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● One problem is:  if we have variable number of 
bits, how do we know when a character starts 
and ends?  What if one symbol is encoded as 
00, another as 11, and another as 0011??
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● One problem is:  if we have variable number of 
bits, how do we know when a character starts 
and ends?  What if one symbol is encoded as 
00, another as 11, and another as 0011??

● How does the receiver know whether the latter 
is the symbol 00 followed by symbol 11, or if it 
corresponds to the symbol 0011?
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● The solution is prefix codes — an encoding 
scheme where no code can be a prefix of 
another code  (for example, if some symbol is 
encoded as 01, then no other code would start 
with 01).
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● With this idea in mind, we see that a better 
encoding, if we know that A occurs 80% of the 
time, B 10% of the time, and C, D 5% of the 
time each, is:

           A = 0,  B = 10,  C = 110, D = 111
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● Let's try encoding the following:

AAAABAAACAAAADAAABAA
● It's 20 characters, so with our straightforward 

encoding, it would take 20×2 = 40 bits.
● With  A = 0,  B = 10,  C = 110, D = 111, it 

encodes to:

00001000011000001110001000   (only 26 bits!)
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● Now, you may be asking  (and granted, it is a 
very fair question!)  «what on earth can this 
possibly have to do with reality?»

● Well, have you seen English text lately?  Do all 
letters occur with the same frequency?
● Putting aside capitalization and punctuation, we 

have 26 letters;  that would require 5 bits per letter.
● It turns out that English text can be encoded with 

approximately ONE bit per letter!!
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●  

(image courtesy of wikipedia.org)
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● This is a very simplified version of the main 
idea behind Information Theory, one of the 
most ground breaking mathematical theories 
developed in recent centuries — and we all co-
existed with its creator, Claude E. Shannon 
(1916–2001)!
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● This is a very simplified version of the main 
idea behind Information Theory, one of the 
most ground breaking mathematical theories 
developed in recent centuries — and we all co-
existed with its creator, Claude E. Shannon 
(1916–2001)!

(BTW, we also co-existed with 
Edsger Dijkstra — another genius
from the 20th century;  he died in 
2002)
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● Incidentally, Claude Shannon, having created 
this Information Theory and given it a solid 
mathematical foundation, he then applied it to 
Data compression, and he got it wrong!!
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● Incidentally, Claude Shannon, having created 
this Information Theory and given it a solid 
mathematical foundation, he then applied it to 
Data compression, and he got it wrong!!
● Not horribly wrong, though — his method, the 

Shannon Fano compression scheme, is reasonably ‑
efficient.... It's just not optimal.
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● A few years later, David Huffman realized a key 
detail in the mechanism, and came up with an 
optimal compression scheme for prefix codes!
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● Incidentally, Claude Shannon, having created 
this Information Theory and given it a solid 
mathematical foundation, he then applied it to 
Data compression, and he got it wrong!!
● Not horribly wrong, though — his method, the 

Shannon Fano compression scheme, is reasonably ‑
efficient.... It's just not optimal.

● A few years later, David Huffman realized a key 
detail in the mechanism, and came up with an 
optimal compression scheme for prefix codes!
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● Huffman encoding is based on building the 
so called ‑ Huffman Encoding Tree, or just 
Huffman Tree.
● It is a tree that determines the optimal encoding for 

a set of symbols with given probabilities of 
occurrence.

● It also allows for efficient decoding of a stream of 
bits — when receiving a 0, we take the left child, 
with a 1, we take the right child, and when we reach 
a leaf node, we know that a character is complete 
(and the leaf node stores the corresponding 
symbol)
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● Let's find the optimal encoding for the set of 
eight symbols  A,B,C,D,E,F,G,H, where they 
occur with probabilities 5%, 10%, 7%, 35%, 
2%, 17%, 20%, 4%, respectively.



  

Binary Trees – Case-studies

● The idea is quite simple — each symbol is a 
node storing the symbol and its probability 
(initially all disconnected).
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● The idea is quite simple — each symbol is a 
node storing the symbol and its probability 
(initially all disconnected).

● We pick the two nodes with lowest probability, 
and create a new node as the parent of those 
two nodes. That node is assigned a probability 
given by the sum of the two children's 
probability.
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● The idea is quite simple — each symbol is a 
node storing the symbol and its probability 
(initially all disconnected).

● We pick the two nodes with lowest probability, 
and create a new node as the parent of those 
two nodes. That node is assigned a probability 
given by the sum of the two children's 
probability.

● We simply repeat that until we have tree (that 
is, until we have a single root node)
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● Example:  A,B,C,D,E,F,G,H, where they occur 
with probabilities 5%, 10%, 7%, 35%, 2%, 17%, 
20%, 4%

E H A C B F G D

2            4            5             7           10          17          20          35
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E H A C B F G D

2            4            5             7           10          17          20          35
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6

A C B F G D

2            4            5             7           10          17          20          35

E H
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6

A C B F G D

                            5             7           10          17          20          35

E H
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A C B F G D

                            5             7           10          17          20          35

E H

6



  

Binary Trees – Case-studies

 

A

C B F G D

                                           7           10          17          20          35

E H

11
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A

C B F G DE H

11

                                           7           10          17          20          35
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A

C B F G DE H

11

                                           7           10          17          20          35
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A

C B F G DE H

11

                                                                      17          20          35

17
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A

F G DE H

11

                                                                      17          20          35

17

C B
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A

F G DE H

                                                                      17          20          35

C B

11

17
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A

F G DE H

                                                                      17          20          35

C B

28
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A

F G DE H

                                                                      17          20          35

C B

28
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A

F G DE H

                                                                      17          20          35

C B

28
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A

DE H

                                                                                                  35

C B

28

37

F G
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C B
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A

DE H

                                                                                                  35

C B

28

37

F G
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A

D

E H

C B 37

F G

63
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A

D

E H

C B 37

F G

63
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A

D

E H

C B

37

F G
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A

D

E H

C B

F G

0

0

0

0

0

0

0

1

11

11

1

00000 00001

0001 0010 0011

1
01 10 11
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● So, if we encode a sequence of 100 characters 
with the “straightforward” encoding, we'd take 
800 bits (right?  8 possible symbols, use three 
bits and assign each symbol to one of the 
possible 8 combinations)
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● So, if we encode a sequence of 100 characters 
with the “straightforward” encoding, we'd take 
300 bits (right?  8 possible symbols, use three 
bits and assign each symbol to one of the 
possible 8 combinations)

● With this encoding, we'll have (assuming the 
average case), 35 characters being a D, 20 of 
them being a G, 17 being an F, etc. 
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● The important detail being:
● 35 + 20 + 17 characters will take 2 bits (since D, G, 

and F all take 2 bits), then 10+7+5 characters will 
take 4 bits (A, B, and C take 4 bits), and 6 
characters will take 5 bits (both E and H take 5 bits) 
for a total of:

72 × 2 + 22 × 4 + 6 × 5 = 144 + 88 + 30 = 262 bits!

(compression factor is not that high, but then, the 
discrepancies in the probabilities were not that high, 
which is when good compression rates are 
possible)
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● If the particular data does not fit the 
probabilities (it could be that by simple 
randomness, we had 8% of E's, instead of the 
average of 2%), then the encoding would not 
be optimal.
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● If the particular data does not fit the 
probabilities (it could be that by simple 
randomness, we had 8% of E's, instead of the 
average of 2%), then the encoding would not 
be optimal.
● Depending on the situation, what we could do is 

build a Huffman Tree for the specific given data 
(instead of using the “theoretical” probabilities, we 
just count occurrences of each symbol, and use 
those numbers to build the tree — then we get the 
optimal encoding for this particular sequence of 
characters!
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● If the particular data does not fit the 
probabilities (it could be that by simple 
randomness, we had 8% of E's, instead of the 
average of 2%), then the encoding would not 
be optimal.
● Depending on the situation, what we could do is 

build a Huffman Tree for the specific given data 
(instead of using the “theoretical” probabilities, we 
just count occurrences of each symbol, and use 
those numbers to build the tree — then we get the 
optimal encoding for this particular sequence of 
characters!   Really neat, huh?
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● For decoding, we just use the tree:
● For example, let's decode the

sequence 011001000100001

A

D

E H

C B

F G

0

0

0

0

0

0

0

1

11

11

1

00000 00001

0001 0010 0011

1
01 10 11
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● For decoding, we just use the tree:
● For example, let's decode the

sequence 011001000100001
 

● Answer being:
DFDAH

A

D

E H

C B

F G

0

0

0

0

0

0

0

1

11

11

1

00000 00001

0001 0010 0011

1
01 10 11



  

Summary

● During today's session, we looked at:
● Two case-studies, hopefully showing the usefulness 

and power of the Tree data structure.
● Both cases are binary trees:

– Expression trees — useful for compilers to translate 
human-readable in-fix expressions into CPU-level post fix ‑
expressions;  also, possibly to manipulate and optimize 
expressions.

– Huffman encoding trees — useful for telecommunications 
and data storage, as the tool provides an optimal data 
compression mechanism for prefix codes.
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