

Binary Trees – Case-studies

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Binary Trees – Case-studies

Standard reminder to set phones to
silent/vibrate mode, please!

Binary Trees – Case-studies

● Today's class:
● We'll look at some examples / case-studies where

trees play an important role as a useful/powerful
tool.
– Binary expression trees and reverse-Polish notation.
– Huffman Trees (for Optimal prefix code data

compression)

Binary Trees – Case-studies

● Binary expression trees:
● Basic idea: mathematical expressions involve

exclusively binary operations (the exception being
the unary minus — as in, −x, but that can always be
expressed as 0 – x, resorting to the binary minus)

● So, an expression involving a certain binary
operation on two sub-expressions can be
represented by a binary tree where the root node
represents the operation, and the child nodes
represent the operands — possibly sub-trees to
represent the sub-expressions.

Binary Trees – Case-studies

● Very simple example:
● The expression a + b would be represented as:

+

a b

Binary Trees – Case-studies

● If instead of b we had another expression, such as
2×c, then we make it such that the right child is not
a leaf node containing b, but a whole sub-tree
representing the expression 2×c:

×

2 c

Binary Trees – Case-studies

● If instead of b we had another expression, such as
2×c, then we make it such that the right child is not
a leaf node containing b, but a whole sub-tree
representing the expression 2×c:

+

a

+

a

Binary Trees – Case-studies

● Given the recursive nature of these expressions
(an expression being a binary operation
between two sub-expressions), we can extend
the binary tree representation to expressions of
arbitrary complexity.

Binary Trees – Case-studies

● Given the recursive nature of these expressions
(an expression being a binary operation
between two sub-expressions), we can extend
the binary tree representation to expressions of
arbitrary complexity.
● Internal nodes (always full nodes) store operations.
● Leaf nodes store literal values or variables.
● This is an ordered tree! (subtraction and division

are not commutative!)

Binary Trees – Case-studies

● Given the recursive nature of these expressions
(an expression being a binary operation
between two sub-expressions), we can extend
the binary tree representation to expressions of
arbitrary complexity.
● Internal nodes (always full nodes) store operations.
● Leaf nodes store literal values or variables.
● This is an ordered tree! (subtraction and division

are not commutative!)

Binary Trees – Case-studies

● Example: 3 (4a + b + c) + d / 5 + (6 - e)

Binary Trees – Case-studies

● BTW ... How do we write (output) the contents
of an expression tree? (i.e., print the
represented expression given the tree)

Binary Trees – Case-studies

● Breadth-first? Depth-first? Pre-, post-, or
in order?‑

Binary Trees – Case-studies

● For the case of a very simple tree, it is clear
that we want in-order traversal — we want
operand1, operator, operand2 (in the simple
example below, a, followed by +, followed by b)

+

a b

Binary Trees – Case-studies

● Does it work for this one as well?

Binary Trees – Case-studies

● Perhaps as interesting: what is the output if we
use post-order depth-first traversal?

Binary Trees – Case-studies

● The pattern is, both operands appear first, then
the operation — does this remind you of
something?

 3 4 a × b c + + d 5 / 6 e − + +

Binary Trees – Case-studies

● Hint: Here's how the C++ compiler thinks that
the CPU can do a + b:

movl -24(%rbp), %eax
movl -20(%rbp), %edx
addl %edx, %eax

● Again, this is Intel assembler, in AT&T-style
notation — a little different than what you're used to
see in ECE-222, but the principle being the same)

Binary Trees – Case-studies

● The principle being: the CPU language
requires that two operands to be loaded first
into registers, then the instruction to perform
the operation is issued.

Binary Trees – Case-studies

● The principle being: the CPU language
requires that two operands to be loaded first
into registers, then the instruction to perform
the operation is issued.
● So, it turns out that this notation “in reverse” could

be useful after all!
● Compilers could use this tree to:

– Do manipulations (possibly simplifications) on the
expression.

– Determine the sequence of assembly-level instructions.

Binary Trees – Case-studies

● BTW, this is known as reverse-Polish notation,
co-creation of Edsger Dijkstra (as a tool to
optimize memory access by using a stack to
perform operations).

(image courtesy of wikipedia.org)

Binary Trees – Case-studies

● Next, we'll look at Huffman Trees for data
compression...

Binary Trees – Case-studies

● Basic idea: Suppose we want to encode a
sequence of “characters” that can only take one
of four possible symbols.

● We need to encode these for transmission over
a digital communications channel (or to store
them in some digital storage medium)

Binary Trees – Case-studies

● Basic idea: Suppose we want to encode a
sequence of “characters” that can only take one
of four possible symbols.

● We need to encode these for transmission over
a digital communications channel (or to store
them in some digital storage medium)
● How do we proceed?

Binary Trees – Case-studies

● The most straightforward approach is to assign
two-bit codes to each symbol (with two bits, we
have four possible combinations, so we use
one combination for each symbol).

● For example, if the symbols are A,B,C,D, we
could simply say A = 00, B = 01, C = 10, D = 11
● The transmitter and receiver agree on this

encoding, and communication will be successful.

Binary Trees – Case-studies

● The sequence ABAACAAD would be encoded
as: 0001000010000011
● The receiver can decode the stream of bits because

it knows that every two bits correspond to a
character.

Binary Trees – Case-studies

● Of course, we'd like to optimize transmission
speed, so we should minimize the amount of
bits used, right?
● However, it seems like we have no choice, since

there are four possible symbols, so we need two
bits to represent each.

Binary Trees – Case-studies

● How about this twist: what if we knew that the
symbol A occurs 80% of the time in the
sequences being transmitted, B occurs 10% of
the time, and C, D occur 5% of the time each?

● Could we come up with a different encoding
that would reduce the amount of bits to
transmit?

Binary Trees – Case-studies

● How about this twist: what if we knew that the
symbol A occurs 80% of the time in the
sequences being transmitted, B occurs 10% of
the time, and C, D occur 5% of the time each?

● Could we come up with a different encoding
that would reduce the amount of bits to
transmit?
● Ok, let me give you a hint: do all symbols have to

encode to a fixed number of bits? Could we use
variable number of bits?

Binary Trees – Case-studies

● The trick is: if we're going to use different
amount of bits for different symbols, then we
minimize the total number of bits by assigning
fewer bits to the symbols that occur more
frequently.

We can easily see why this is the case — if Nk is
the number of times that symbol Sk appears, and
|Sk| is the size (the number of bits) of symbol Sk,
then the total number of bits is:

 N = N1|S1| + N2|S2| + N3|S3| + N4|S4|

Binary Trees – Case-studies

● One problem is: if we have variable number of
bits, how do we know when a character starts
and ends? What if one symbol is encoded as
00, another as 11, and another as 0011??

Binary Trees – Case-studies

● One problem is: if we have variable number of
bits, how do we know when a character starts
and ends? What if one symbol is encoded as
00, another as 11, and another as 0011??

● How does the receiver know whether the latter
is the symbol 00 followed by symbol 11, or if it
corresponds to the symbol 0011?

Binary Trees – Case-studies

● The solution is prefix codes — an encoding
scheme where no code can be a prefix of
another code (for example, if some symbol is
encoded as 01, then no other code would start
with 01).

Binary Trees – Case-studies

● With this idea in mind, we see that a better
encoding, if we know that A occurs 80% of the
time, B 10% of the time, and C, D 5% of the
time each, is:

 A = 0, B = 10, C = 110, D = 111

Binary Trees – Case-studies

● Let's try encoding the following:

AAAABAAACAAAADAAABAA
● It's 20 characters, so with our straightforward

encoding, it would take 20×2 = 40 bits.
● With A = 0, B = 10, C = 110, D = 111, it

encodes to:

00001000011000001110001000 (only 26 bits!)

Binary Trees – Case-studies

● Now, you may be asking (and granted, it is a
very fair question!) «what on earth can this
possibly have to do with reality?»

● Well, have you seen English text lately? Do all
letters occur with the same frequency?
● Putting aside capitalization and punctuation, we

have 26 letters; that would require 5 bits per letter.
● It turns out that English text can be encoded with

approximately ONE bit per letter!!

Binary Trees – Case-studies

●

(image courtesy of wikipedia.org)

Binary Trees – Case-studies

● This is a very simplified version of the main
idea behind Information Theory, one of the
most ground breaking mathematical theories
developed in recent centuries — and we all co-
existed with its creator, Claude E. Shannon
(1916–2001)!

Binary Trees – Case-studies

● This is a very simplified version of the main
idea behind Information Theory, one of the
most ground breaking mathematical theories
developed in recent centuries — and we all co-
existed with its creator, Claude E. Shannon
(1916–2001)!

(BTW, we also co-existed with
Edsger Dijkstra — another genius
from the 20th century; he died in
2002)

Binary Trees – Case-studies

● Incidentally, Claude Shannon, having created
this Information Theory and given it a solid
mathematical foundation, he then applied it to
Data compression, and he got it wrong!!

Binary Trees – Case-studies

● Incidentally, Claude Shannon, having created
this Information Theory and given it a solid
mathematical foundation, he then applied it to
Data compression, and he got it wrong!!
● Not horribly wrong, though — his method, the

Shannon Fano compression scheme, is reasonably ‑
efficient.... It's just not optimal.

Binary Trees – Case-studies

● Incidentally, Claude Shannon, having created
this Information Theory and given it a solid
mathematical foundation, he then applied it to
Data compression, and he got it wrong!!
● Not horribly wrong, though — his method, the

Shannon Fano compression scheme, is reasonably ‑
efficient.... It's just not optimal.

● A few years later, David Huffman realized a key
detail in the mechanism, and came up with an
optimal compression scheme for prefix codes!

Binary Trees – Case-studies

● Incidentally, Claude Shannon, having created
this Information Theory and given it a solid
mathematical foundation, he then applied it to
Data compression, and he got it wrong!!
● Not horribly wrong, though — his method, the

Shannon Fano compression scheme, is reasonably ‑
efficient.... It's just not optimal.

● A few years later, David Huffman realized a key
detail in the mechanism, and came up with an
optimal compression scheme for prefix codes!

Binary Trees – Case-studies

● Huffman encoding is based on building the
so called ‑ Huffman Encoding Tree, or just
Huffman Tree.
● It is a tree that determines the optimal encoding for

a set of symbols with given probabilities of
occurrence.

● It also allows for efficient decoding of a stream of
bits — when receiving a 0, we take the left child,
with a 1, we take the right child, and when we reach
a leaf node, we know that a character is complete
(and the leaf node stores the corresponding
symbol)

Binary Trees – Case-studies

● Let's find the optimal encoding for the set of
eight symbols A,B,C,D,E,F,G,H, where they
occur with probabilities 5%, 10%, 7%, 35%,
2%, 17%, 20%, 4%, respectively.

Binary Trees – Case-studies

● The idea is quite simple — each symbol is a
node storing the symbol and its probability
(initially all disconnected).

Binary Trees – Case-studies

● The idea is quite simple — each symbol is a
node storing the symbol and its probability
(initially all disconnected).

● We pick the two nodes with lowest probability,
and create a new node as the parent of those
two nodes. That node is assigned a probability
given by the sum of the two children's
probability.

Binary Trees – Case-studies

● The idea is quite simple — each symbol is a
node storing the symbol and its probability
(initially all disconnected).

● We pick the two nodes with lowest probability,
and create a new node as the parent of those
two nodes. That node is assigned a probability
given by the sum of the two children's
probability.

● We simply repeat that until we have tree (that
is, until we have a single root node)

Binary Trees – Case-studies

● Example: A,B,C,D,E,F,G,H, where they occur
with probabilities 5%, 10%, 7%, 35%, 2%, 17%,
20%, 4%

E H A C B F G D

2 4 5 7 10 17 20 35

Binary Trees – Case-studies

E H A C B F G D

2 4 5 7 10 17 20 35

Binary Trees – Case-studies

6

A C B F G D

2 4 5 7 10 17 20 35

E H

Binary Trees – Case-studies

6

A C B F G D

 5 7 10 17 20 35

E H

Binary Trees – Case-studies

A C B F G D

 5 7 10 17 20 35

E H

6

Binary Trees – Case-studies

A

C B F G D

 7 10 17 20 35

E H

11

Binary Trees – Case-studies

A

C B F G DE H

11

 7 10 17 20 35

Binary Trees – Case-studies

A

C B F G DE H

11

 7 10 17 20 35

Binary Trees – Case-studies

A

C B F G DE H

11

 17 20 35

17

Binary Trees – Case-studies

A

F G DE H

11

 17 20 35

17

C B

Binary Trees – Case-studies

A

F G DE H

 17 20 35

C B

11

17

Binary Trees – Case-studies

A

F G DE H

 17 20 35

C B

28

Binary Trees – Case-studies

A

F G DE H

 17 20 35

C B

28

Binary Trees – Case-studies

A

F G DE H

 17 20 35

C B

28

Binary Trees – Case-studies

A

DE H

 35

C B

28

37

F G

Binary Trees – Case-studies

A

DE H

 35

C B

28

37

F G

Binary Trees – Case-studies

A

DE H

 35

C B

28

37

F G

Binary Trees – Case-studies

A

D

E H

C B 37

F G

63

Binary Trees – Case-studies

A

D

E H

C B 37

F G

63

Binary Trees – Case-studies

A

D

E H

C B

37

F G

Binary Trees – Case-studies

A

D

E H

C B

F G

0

0

0

0

0

0

0

1

11

11

1

00000 00001

0001 0010 0011

1
01 10 11

Binary Trees – Case-studies

● So, if we encode a sequence of 100 characters
with the “straightforward” encoding, we'd take
800 bits (right? 8 possible symbols, use three
bits and assign each symbol to one of the
possible 8 combinations)

Binary Trees – Case-studies

● So, if we encode a sequence of 100 characters
with the “straightforward” encoding, we'd take
300 bits (right? 8 possible symbols, use three
bits and assign each symbol to one of the
possible 8 combinations)

● With this encoding, we'll have (assuming the
average case), 35 characters being a D, 20 of
them being a G, 17 being an F, etc.

Binary Trees – Case-studies

● The important detail being:
● 35 + 20 + 17 characters will take 2 bits (since D, G,

and F all take 2 bits), then 10+7+5 characters will
take 4 bits (A, B, and C take 4 bits), and 6
characters will take 5 bits (both E and H take 5 bits)
for a total of:

72 × 2 + 22 × 4 + 6 × 5 = 144 + 88 + 30 = 262 bits!

(compression factor is not that high, but then, the
discrepancies in the probabilities were not that high,
which is when good compression rates are
possible)

Binary Trees – Case-studies

● If the particular data does not fit the
probabilities (it could be that by simple
randomness, we had 8% of E's, instead of the
average of 2%), then the encoding would not
be optimal.

Binary Trees – Case-studies

● If the particular data does not fit the
probabilities (it could be that by simple
randomness, we had 8% of E's, instead of the
average of 2%), then the encoding would not
be optimal.
● Depending on the situation, what we could do is

build a Huffman Tree for the specific given data
(instead of using the “theoretical” probabilities, we
just count occurrences of each symbol, and use
those numbers to build the tree — then we get the
optimal encoding for this particular sequence of
characters!

Binary Trees – Case-studies

● If the particular data does not fit the
probabilities (it could be that by simple
randomness, we had 8% of E's, instead of the
average of 2%), then the encoding would not
be optimal.
● Depending on the situation, what we could do is

build a Huffman Tree for the specific given data
(instead of using the “theoretical” probabilities, we
just count occurrences of each symbol, and use
those numbers to build the tree — then we get the
optimal encoding for this particular sequence of
characters! Really neat, huh?

Binary Trees – Case-studies

● For decoding, we just use the tree:
● For example, let's decode the

sequence 011001000100001

A

D

E H

C B

F G

0

0

0

0

0

0

0

1

11

11

1

00000 00001

0001 0010 0011

1
01 10 11

Binary Trees – Case-studies

● For decoding, we just use the tree:
● For example, let's decode the

sequence 011001000100001

● Answer being:
DFDAH

A

D

E H

C B

F G

0

0

0

0

0

0

0

1

11

11

1

00000 00001

0001 0010 0011

1
01 10 11

Summary

● During today's session, we looked at:
● Two case-studies, hopefully showing the usefulness

and power of the Tree data structure.
● Both cases are binary trees:

– Expression trees — useful for compilers to translate
human-readable in-fix expressions into CPU-level post fix ‑
expressions; also, possibly to manipulate and optimize
expressions.

– Huffman encoding trees — useful for telecommunications
and data storage, as the tool provides an optimal data
compression mechanism for prefix codes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

