

Balanced BST and AVL Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Balanced BST and AVL Trees

Standard reminder to set phones to
silent/vibrate mode, please!

Balanced BST and AVL Trees

● Previously, on ECE-250...
● We talked about Binary Search Trees (BST) and

their applicability to searches.
● We also wanted to use them to maintain a list of

ordered values (as in, adding and removing
elements).
– And of course, greedy as we are, never happy enough

with what we have, we also wanted to do all of this
efficiently!!

● We discussed that this required the height of the
tree to be Θ(log n), which requires a balanced tree.

Balanced BST and AVL Trees

● And now...
● We'll expand on this issue of Balanced Binary

Search Trees.
– We'll look into two “obvious” types of balance (weight and

height).
● We'll discuss AVL trees — one of the commonly

used techniques to efficiently maintain a balanced
BST.
– We'll look into the techniques to perform all the

operations and techniques to re-balance the tree.

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● Data is not hierarchical, but rather linearly or totally

ordered.
● Values in the left sub-tree are all less than the value

at the root, and values in the right sub-tree are all
greater than the value at the root (we'll continue to
assume that we have no duplicate values).

● This allows us to do the analogous to a binary
search — if the value we're searching is less than
the current node, we continue searching through
the left sub-tree.

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● The idea being: if each sub-tree always has half as

many elements, then we're doing essentially the
same as in binary search — with each comparison,
we discard half the remaining values.
– This leads to logarithmic time in the search.

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● An alternative way to look at this is: the search

takes worst-case Θ(h), where h is the height of the
tree
– This tells us that a tree where the left and right sub-trees

of every node have the same number of nodes has
logarithmic height with respect to the number of nodes!

Balanced BST and AVL Trees

● We notice that a tree where we insert and
remove elements can not have strict balance as
described so far:
● Our definition has to accommodate a ±1 difference

(why?)

Balanced BST and AVL Trees

● We notice that a tree where we insert and
remove elements can not have strict balance as
described so far:
● Our definition has to accommodate a ±1 difference

(why?)
● As a simple counter-example: suppose we have a

perfect tree, and add one element. How could both
sub-trees have the exact same number of
elements?

Balanced BST and AVL Trees

● A different type of balance, though leading to
the same outcome (logarithmic height with
respect to the number of nodes) is height
balance:
● For every node in the tree, the left and right

sub trees have the same height, ±1‑

Balanced BST and AVL Trees

● We'll now look into AVL trees (named after its
two inventors, Adelson-Velskii and Landis), a
type of height balanced binary search trees.‑

Balanced BST and AVL Trees

● We'll now look into AVL trees (named after its
two inventors, Adelson-Velskii and Landis), a
type of height balanced binary search trees.‑

● A binary search tree is an AVL tree if:
● The difference in heights between left and right

sub trees is at most 1, and‑
● Both sub-trees are AVL trees

Balanced BST and AVL Trees

● The principle of operation is remarkably simple;
let's look at this “prototypical” trick to maintain
balance:
● Let's add 3, 2, 1 (in that order) to a binary search

tree:

Balanced BST and AVL Trees

● The principle of operation is remarkably simple;
let's look at this “prototypical” trick to maintain
balance:
● Let's add 3, 2, 1 (in that order) to a binary search

tree:

Balanced BST and AVL Trees

● Inserting 1 causes the tree to become
imbalanced at node 3 (left sub-tree has height
1, and right sub-tree has height ... ?? you tell
me?)

Balanced BST and AVL Trees

● Inserting 1 causes the tree to become
imbalanced at node 3 (left sub-tree has height
1, and right sub-tree has height ... ?? you tell
me?) — we recall from the first class on trees,
that by convention, an empty tree has height −1

Balanced BST and AVL Trees

● So, we rotate it towards the right:

Balanced BST and AVL Trees

● So, we rotate it towards the right:

Balanced BST and AVL Trees

● If we had inserted the sequence 3, 2, 1, the
situation would have been essentially the same;
the right sub-tree would be the deeper one in
that case, so we rotate towards the left in that
case.

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does
make a significant difference — we end up with
the following tree:

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does
make a significant difference — we end up with
the following tree:

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does
make a significant difference — we end up with
the following tree:
● Clearly, we can't rotate to balance (right? why?)

Balanced BST and AVL Trees

● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and

then we're in the exact same previous case (so we
rotate towards the right)

Balanced BST and AVL Trees

● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and

then we're in the exact same previous case (so we
rotate towards the right)

● The “net” effect is the following:

Balanced BST and AVL Trees

● What about a more complicated situation?

Balanced BST and AVL Trees

● We insert the value a, which makes it into the
subtree BL, without causing any imbalance in it.

(notice that a blue triangle denotes a tree with height h)

Balanced BST and AVL Trees

● We insert the value a, which makes it into the
subtree BL, without causing any imbalance in it.

Balanced BST and AVL Trees

● How do we fix the imbalance in f ? If we try to
rotate, what do we do about BR?

Balanced BST and AVL Trees

● The key detail is that we have to detach BR
from the tree (temporarily — we'll re-attach it
after the rotation!)

Balanced BST and AVL Trees

● The key detail is that we have to detach BR
from the tree (temporarily — we'll re-attach it
after the rotation!)

Balanced BST and AVL Trees

● We now see that f – b – BL is the sequence that

we have to rotate towards the right:

Balanced BST and AVL Trees

● We rotate:

Balanced BST and AVL Trees

● Then re-attach BR at the obvious place (it is
obvious, right?):

Balanced BST and AVL Trees

● It really is the only “loose” branch where we can
attach it — the question is: can we attach it
there without breaking the tree's constraints?

Balanced BST and AVL Trees

● BR can clearly go as the left sub-tree of f — it
was originally below b which was part of f 's left
sub-tree. And it can also be part of b's right
sub-tree (it was originally b's right sub-tree!):

Balanced BST and AVL Trees

● Another interesting detail is that the height of
the tree with root b equals the original height of
the tree with root f — this tells us that the
insertion can not affect the balance of any
ancestors!

Balanced BST and AVL Trees

● In other words, this tells us that whenever an
imbalance is created, we only need to address
it at the deepest level where there is imbalance.

Balanced BST and AVL Trees

● In other words, this tells us that whenever an
imbalance is created, we only need to address
it at the deepest level where there is imbalance.
● Things were originally balanced everywhere.
● Fixing something at a node with depth d fixes fixes

any imbalance in any node above it.
– Since nothing else changed in the tree, it must be the

case that fixing the imbalance at the deepest node where
imbalance is present must be sufficient.

Balanced BST and AVL Trees

● For example, the just added 54 causes
imbalance at the root, at 55, and at 48:

Balanced BST and AVL Trees

● However, it's pretty clear that a rotation around
48 fixes the imbalance at all points!

Balanced BST and AVL Trees

● However, not everything is good news...

Balanced BST and AVL Trees

● However, not everything is good news... the
uh oh!‑ situation happens if the inserted
element makes it to
BR instead of BL:

Balanced BST and AVL Trees

● If we try the same trick, we end up with a still
imbalanced tree!

Balanced BST and AVL Trees

● If we try the same trick, we end up with a still
imbalanced tree!

Balanced BST and AVL Trees

● Notice that what's really going on is that we
have a situation similar to the second
prototypical example, where we needed a
double rotation!

Balanced BST and AVL Trees

● We saw that we just need to transform the
situation into a situation similar to the first
case... (how do we do that?)

Balanced BST and AVL Trees

● As we saw with the prototypical example, we
first rotate towards the left around b. Then
we're back in the simpler case!

Balanced BST and AVL Trees

● We “zoom in” into the sub-tree BR:

Balanced BST and AVL Trees

● And insert a value (either c or e)

Balanced BST and AVL Trees

● Going from f in the direction of the cause of the
imbalance, we do a left – right; we first detach
things:

Balanced BST and AVL Trees

● Then readjust:

Balanced BST and AVL Trees

● Do I need to make you guess where would DL
and DR be attached? :-)

Balanced BST and AVL Trees

● Both can go at the right of b, and both can go at
the left of f — so, we place them according to
the constraint due to d:

Balanced BST and AVL Trees

● Both can go at the right of b, and both can go at
the left of f — so, we place them according to
the constraint due to d:

Balanced BST and AVL Trees

● In either case — c, added below DL, or e,
added below DR — we end up with a balanced
tree:

Balanced BST and AVL Trees

● An example: insertion of 46 causes imbalance
at nodes 42, 55, and 36 — we address the
imbalance at 42 (the deepest node):

Balanced BST and AVL Trees

● First, rotate towards the right around 43
(detaching 46 and reattaching it as 48's left
sub-tree):

Balanced BST and AVL Trees

● Then rotate towards the left around 42:

Balanced BST and AVL Trees

● We observe a piece of good news: these
rotations take Θ(1), and the insertion takes
Θ(h) = Θ(log n), so we're in good shape:
insertion (including maintaining balance) takes
Θ(log n)

● We'll also see that removals, though a bit more
complicated (and more inefficient), also take
Θ(log n).

Summary

● During today's class:
● Introduced the notion of balance in BSTs
● Discussed height-balance (as opposed to

weight balance)‑
● Looked into AVL trees:

– Prototypical examples of re-balancing a tree that
becomes unbalanced due to an insertion.

– Discussed the single-rotation and double-rotation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

