
  

Balanced BST and AVL Trees

Carlos Moreno                                
cmoreno @ uwaterloo.ca                         

EIT-4103                                   

https://ece.uwaterloo.ca/~cmoreno/ece250



  

Balanced BST and AVL Trees

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Balanced BST and AVL Trees

● Previously, on ECE-250...
● We talked about Binary Search Trees (BST) and 

their applicability to searches.
● We also wanted to use them to maintain a list of 

ordered values (as in, adding and removing 
elements).
– And of course, greedy as we are, never happy enough 

with what we have, we also wanted to do all of this 
efficiently!!

● We discussed that this required the height of the 
tree to be Θ(log n), which requires a balanced tree.



  

Balanced BST and AVL Trees

● And now...
● We'll expand on this issue of Balanced Binary 

Search Trees.
– We'll look into two “obvious” types of balance (weight and 

height).
● We'll discuss AVL trees — one of the commonly 

used techniques to efficiently maintain a balanced 
BST.
– We'll look into the techniques to perform all the 

operations and techniques to re-balance the tree.



  

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● Data is not hierarchical, but rather linearly or totally 

ordered.
● Values in the left sub-tree are all less than the value 

at the root, and values in the right sub-tree are all 
greater than the value at the root  (we'll continue to 
assume that we have no duplicate values).

● This allows us to do the analogous to a binary 
search — if the value we're searching is less than 
the current node, we continue searching through 
the left sub-tree.



  

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● The idea being:  if each sub-tree always has half as 

many elements, then we're doing essentially the 
same as in binary search — with each comparison, 
we discard half the remaining values.
– This leads to logarithmic time in the search.



  

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● An alternative way to look at this is:  the search 

takes worst-case Θ(h), where h is the height of the 
tree
– This tells us that a tree where the left and right sub-trees 

of every node have the same number of nodes has 
logarithmic height with respect to the number of nodes!



  

Balanced BST and AVL Trees

● We notice that a tree where we insert and 
remove elements can not have strict balance as 
described so far:
● Our definition has to accommodate a ±1 difference  

(why?)



  

Balanced BST and AVL Trees

● We notice that a tree where we insert and 
remove elements can not have strict balance as 
described so far:
● Our definition has to accommodate a ±1 difference  

(why?)
● As a simple counter-example:  suppose we have a 

perfect tree, and add one element.  How could both 
sub-trees have the exact same number of 
elements?



  

Balanced BST and AVL Trees

● A different type of balance, though leading to 
the same outcome (logarithmic height with 
respect to the number of nodes) is height 
balance:
● For every node in the tree, the left and right 

sub trees have the same height, ±1‑



  

Balanced BST and AVL Trees

● We'll now look into AVL trees (named after its 
two inventors, Adelson-Velskii and Landis), a 
type of height balanced binary search trees.‑



  

Balanced BST and AVL Trees

● We'll now look into AVL trees (named after its 
two inventors, Adelson-Velskii and Landis), a 
type of height balanced binary search trees.‑
 

● A binary search tree is an AVL tree if:
● The difference in heights between left and right 

sub trees is at most 1, and‑
● Both sub-trees are AVL trees



  

Balanced BST and AVL Trees

● The principle of operation is remarkably simple; 
let's look at this “prototypical” trick to maintain 
balance:
● Let's add 3, 2, 1 (in that order) to a binary search 

tree:



  

Balanced BST and AVL Trees

● The principle of operation is remarkably simple; 
let's look at this “prototypical” trick to maintain 
balance:
● Let's add 3, 2, 1 (in that order) to a binary search 

tree:



  

Balanced BST and AVL Trees

● Inserting 1 causes the tree to become 
imbalanced at node 3  (left sub-tree has height 
1, and right sub-tree has height ... ??  you tell 
me?)



  

Balanced BST and AVL Trees

● Inserting 1 causes the tree to become 
imbalanced at node 3  (left sub-tree has height 
1, and right sub-tree has height ... ??  you tell 
me?) — we recall from the first class on trees, 
that by convention, an empty tree has height −1



  

Balanced BST and AVL Trees

● So, we rotate it towards the right:



  

Balanced BST and AVL Trees

● So, we rotate it towards the right:



  

Balanced BST and AVL Trees

● If we had inserted the sequence 3, 2, 1, the 
situation would have been essentially the same; 
the right sub-tree would be the deeper one in 
that case, so we rotate towards the left in that 
case.



  

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does 
make a significant difference — we end up with 
the following tree:



  

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does 
make a significant difference — we end up with 
the following tree:



  

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does 
make a significant difference — we end up with 
the following tree:
● Clearly, we can't rotate to balance  (right? why?)



  

Balanced BST and AVL Trees

● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and 

then we're in the exact same previous case  (so we 
rotate towards the right)



  

Balanced BST and AVL Trees

● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and 

then we're in the exact same previous case  (so we 
rotate towards the right)

● The “net” effect is the following:



  

Balanced BST and AVL Trees

● What about a more complicated situation?



  

Balanced BST and AVL Trees

● We insert the value a, which makes it into the 
subtree BL, without causing any imbalance in it.

(notice that a blue triangle denotes a tree with height h)



  

Balanced BST and AVL Trees

● We insert the value a, which makes it into the 
subtree BL, without causing any imbalance in it.



  

Balanced BST and AVL Trees

● How do we fix the imbalance in f ?  If we try to 
rotate, what do we do about BR?



  

Balanced BST and AVL Trees

● The key detail is that we have to detach BR 
from the tree (temporarily — we'll re-attach it 
after the rotation!)



  

Balanced BST and AVL Trees

● The key detail is that we have to detach BR 
from the tree (temporarily — we'll re-attach it 
after the rotation!)



  

Balanced BST and AVL Trees

● We now see that f – b – BL is the sequence that 

we have to rotate towards the right:



  

Balanced BST and AVL Trees

● We rotate:



  

Balanced BST and AVL Trees

● Then re-attach BR at the obvious place  (it is 
obvious, right?):



  

Balanced BST and AVL Trees

● It really is the only “loose” branch where we can 
attach it — the question is:  can we attach it 
there without breaking the tree's constraints?



  

Balanced BST and AVL Trees

● BR can clearly go as the left sub-tree of f — it 
was originally below b which was part of f 's left 
sub-tree.  And it can also be part of b's right 
sub-tree (it was originally b's right sub-tree!):



  

Balanced BST and AVL Trees

● Another interesting detail is that the height of 
the tree with root b equals the original height of 
the tree with root f — this tells us that the 
insertion can not affect the balance of any 
ancestors!



  

Balanced BST and AVL Trees

● In other words, this tells us that whenever an 
imbalance is created, we only need to address 
it at the deepest level where there is imbalance.



  

Balanced BST and AVL Trees

● In other words, this tells us that whenever an 
imbalance is created, we only need to address 
it at the deepest level where there is imbalance.
● Things were originally balanced everywhere.
● Fixing something at a node with depth d fixes fixes 

any imbalance in any node above it.
– Since nothing else changed in the tree, it must be the 

case that fixing the imbalance at the deepest node where 
imbalance is present must be sufficient.



  

Balanced BST and AVL Trees

● For example, the just added 54 causes 
imbalance at the root, at 55, and at 48:



  

Balanced BST and AVL Trees

● However, it's pretty clear that a rotation around 
48 fixes the imbalance at all points!



  

Balanced BST and AVL Trees

● However, not everything is good news... 



  

Balanced BST and AVL Trees

● However, not everything is good news... the 
uh oh!‑  situation happens if the inserted 
element makes it to 
BR instead of BL:



  

Balanced BST and AVL Trees

● If we try the same trick, we end up with a still 
imbalanced tree!



  

Balanced BST and AVL Trees

● If we try the same trick, we end up with a still 
imbalanced tree!



  

Balanced BST and AVL Trees

● Notice that what's really going on is that we 
have a situation similar to the second 
prototypical example, where we needed a 
double rotation!



  

Balanced BST and AVL Trees

● We saw that we just need to transform the 
situation into a situation similar to the first 
case... (how do we do that?)



  

Balanced BST and AVL Trees

● As we saw with the prototypical example, we 
first rotate towards the left around b.  Then 
we're back in the simpler case!



  

Balanced BST and AVL Trees

● We “zoom in” into the sub-tree BR:



  

Balanced BST and AVL Trees

● And insert a value (either c or e)



  

Balanced BST and AVL Trees

● Going from f in the direction of the cause of the 
imbalance, we do a left – right;  we first detach 
things:



  

Balanced BST and AVL Trees

● Then readjust:



  

Balanced BST and AVL Trees

● Do I need to make you guess where would DL 
and DR be attached?  :-)



  

Balanced BST and AVL Trees

● Both can go at the right of b, and both can go at 
the left of f — so, we place them according to 
the constraint due to d:



  

Balanced BST and AVL Trees

● Both can go at the right of b, and both can go at 
the left of f — so, we place them according to 
the constraint due to d:



  

Balanced BST and AVL Trees

● In either case — c, added below  DL, or e, 
added below DR — we end up with a balanced 
tree:



  

Balanced BST and AVL Trees

● An example:  insertion of 46 causes imbalance 
at nodes 42, 55, and 36 — we address the 
imbalance at 42  (the deepest node):



  

Balanced BST and AVL Trees

● First, rotate towards the right around 43  
(detaching 46 and reattaching it as 48's left 
sub-tree):
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● Then rotate towards the left around 42:



  

Balanced BST and AVL Trees

● We observe a piece of good news:  these 
rotations take Θ(1), and the insertion takes 
Θ(h) = Θ(log n), so we're in good shape: 
insertion (including maintaining balance) takes 
Θ(log n)

● We'll also see that removals, though a bit more 
complicated (and more inefficient), also take 
Θ(log n).



  

Summary

● During today's class:
● Introduced the notion of balance in BSTs
● Discussed height-balance (as opposed to 

weight balance)‑
● Looked into AVL trees:

– Prototypical examples of re-balancing a tree that 
becomes unbalanced due to an insertion.

– Discussed the single-rotation and double-rotation.
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