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Standard reminder to set phones to 
silent/vibrate mode, please!
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● Previously, on ECE-250...
● We talked about Binary Search Trees (BST) and 

their applicability to searches.
● We also wanted to use them to maintain a list of 

ordered values (as in, adding and removing 
elements).
– And of course, greedy as we are, never happy enough 

with what we have, we also wanted to do all of this 
efficiently!!

● We discussed that this required the height of the 
tree to be Θ(log n), which requires a balanced tree.
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● And now...
● We'll expand on this issue of Balanced Binary 

Search Trees.
– We'll look into two “obvious” types of balance (weight and 

height).
● We'll discuss AVL trees — one of the commonly 

used techniques to efficiently maintain a balanced 
BST.
– We'll look into the techniques to perform all the 

operations and techniques to re-balance the tree.
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● Recall search on a binary search tree:
● Data is not hierarchical, but rather linearly or totally 

ordered.
● Values in the left sub-tree are all less than the value 

at the root, and values in the right sub-tree are all 
greater than the value at the root  (we'll continue to 
assume that we have no duplicate values).

● This allows us to do the analogous to a binary 
search — if the value we're searching is less than 
the current node, we continue searching through 
the left sub-tree.
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● Recall search on a binary search tree:
● The idea being:  if each sub-tree always has half as 

many elements, then we're doing essentially the 
same as in binary search — with each comparison, 
we discard half the remaining values.
– This leads to logarithmic time in the search.
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● Recall search on a binary search tree:
● An alternative way to look at this is:  the search 

takes worst-case Θ(h), where h is the height of the 
tree
– This tells us that a tree where the left and right sub-trees 

of every node have the same number of nodes has 
logarithmic height with respect to the number of nodes!
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● We notice that a tree where we insert and 
remove elements can not have strict balance as 
described so far:
● Our definition has to accommodate a ±1 difference  

(why?)
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● A different type of balance, though leading to 
the same outcome (logarithmic height with 
respect to the number of nodes) is height 
balance:
● For every node in the tree, the left and right 

sub trees have the same height, ±1‑
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● We'll now look into AVL trees (named after its 
two inventors, Adelson-Velskii and Landis), a 
type of height balanced binary search trees.‑
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● We'll now look into AVL trees (named after its 
two inventors, Adelson-Velskii and Landis), a 
type of height balanced binary search trees.‑
 

● A binary search tree is an AVL tree if:
● The difference in heights between left and right 

sub trees is at most 1, and‑
● Both sub-trees are AVL trees
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● The principle of operation is remarkably simple; 
let's look at this “prototypical” trick to maintain 
balance:
● Let's add 3, 2, 1 (in that order) to a binary search 

tree:
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● The principle of operation is remarkably simple; 
let's look at this “prototypical” trick to maintain 
balance:
● Let's add 3, 2, 1 (in that order) to a binary search 

tree:
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● Inserting 1 causes the tree to become 
imbalanced at node 3  (left sub-tree has height 
1, and right sub-tree has height ... ??  you tell 
me?)
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● So, we rotate it towards the right:
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● So, we rotate it towards the right:
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● If we had inserted the sequence 3, 2, 1, the 
situation would have been essentially the same; 
the right sub-tree would be the deeper one in 
that case, so we rotate towards the left in that 
case.



  

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does 
make a significant difference — we end up with 
the following tree:
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● Inserting the sequence 3, 1, 2, however, does 
make a significant difference — we end up with 
the following tree:
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● Inserting the sequence 3, 1, 2, however, does 
make a significant difference — we end up with 
the following tree:
● Clearly, we can't rotate to balance  (right? why?)
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● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and 

then we're in the exact same previous case  (so we 
rotate towards the right)
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● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and 

then we're in the exact same previous case  (so we 
rotate towards the right)

● The “net” effect is the following:
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● What about a more complicated situation?
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● We insert the value a, which makes it into the 
subtree BL, without causing any imbalance in it.
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● We insert the value a, which makes it into the 
subtree BL, without causing any imbalance in it.
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● How do we fix the imbalance in f ?  If we try to 
rotate, what do we do about BR?
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● We'll look into this during class
● Notice that once we've figured this out, we're pretty 

much done:
● An insertion can only cause one of the sub-trees to 

increase height by at most one.
– Since these rotations take Θ(1)  (right?  why?), and the 

insertion takes Θ(h) = Θ(log n), then we're in good shape: 
insertion (including maintaining balance) takes Θ(log n)

● We'll also see (most likely the following class) that 
removals are a bit more complicated (more 
inefficient), but still Θ(log n).
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● We'll also take a look at several examples to 
illustrate these rotations in actual trees.
● One interesting detail we'll discuss is that whenever 

an imbalance is created, we only need to fix it at the 
deepest level  (that will automatically fix the 
imbalance at all levels)
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● For example, the just added 54 causes 
imbalance at the root, at 55, and at 48:
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● However, it's pretty clear that a rotation around 
48 fixes the imbalance at all points!
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