

Balanced BST and AVL Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Balanced BST and AVL Trees

Standard reminder to set phones to
silent/vibrate mode, please!

Balanced BST and AVL Trees

● Previously, on ECE-250...
● We talked about Binary Search Trees (BST) and

their applicability to searches.
● We also wanted to use them to maintain a list of

ordered values (as in, adding and removing
elements).
– And of course, greedy as we are, never happy enough

with what we have, we also wanted to do all of this
efficiently!!

● We discussed that this required the height of the
tree to be Θ(log n), which requires a balanced tree.

Balanced BST and AVL Trees

● And now...
● We'll expand on this issue of Balanced Binary

Search Trees.
– We'll look into two “obvious” types of balance (weight and

height).
● We'll discuss AVL trees — one of the commonly

used techniques to efficiently maintain a balanced
BST.
– We'll look into the techniques to perform all the

operations and techniques to re-balance the tree.

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● Data is not hierarchical, but rather linearly or totally

ordered.
● Values in the left sub-tree are all less than the value

at the root, and values in the right sub-tree are all
greater than the value at the root (we'll continue to
assume that we have no duplicate values).

● This allows us to do the analogous to a binary
search — if the value we're searching is less than
the current node, we continue searching through
the left sub-tree.

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● The idea being: if each sub-tree always has half as

many elements, then we're doing essentially the
same as in binary search — with each comparison,
we discard half the remaining values.
– This leads to logarithmic time in the search.

Balanced BST and AVL Trees

● Recall search on a binary search tree:
● An alternative way to look at this is: the search

takes worst-case Θ(h), where h is the height of the
tree
– This tells us that a tree where the left and right sub-trees

of every node have the same number of nodes has
logarithmic height with respect to the number of nodes!

Balanced BST and AVL Trees

● We notice that a tree where we insert and
remove elements can not have strict balance as
described so far:
● Our definition has to accommodate a ±1 difference

(why?)

Balanced BST and AVL Trees

● A different type of balance, though leading to
the same outcome (logarithmic height with
respect to the number of nodes) is height
balance:
● For every node in the tree, the left and right

sub trees have the same height, ±1‑

Balanced BST and AVL Trees

● We'll now look into AVL trees (named after its
two inventors, Adelson-Velskii and Landis), a
type of height balanced binary search trees.‑

Balanced BST and AVL Trees

● We'll now look into AVL trees (named after its
two inventors, Adelson-Velskii and Landis), a
type of height balanced binary search trees.‑

● A binary search tree is an AVL tree if:
● The difference in heights between left and right

sub trees is at most 1, and‑
● Both sub-trees are AVL trees

Balanced BST and AVL Trees

● The principle of operation is remarkably simple;
let's look at this “prototypical” trick to maintain
balance:
● Let's add 3, 2, 1 (in that order) to a binary search

tree:

Balanced BST and AVL Trees

● The principle of operation is remarkably simple;
let's look at this “prototypical” trick to maintain
balance:
● Let's add 3, 2, 1 (in that order) to a binary search

tree:

Balanced BST and AVL Trees

● Inserting 1 causes the tree to become
imbalanced at node 3 (left sub-tree has height
1, and right sub-tree has height ... ?? you tell
me?)

Balanced BST and AVL Trees

● So, we rotate it towards the right:

Balanced BST and AVL Trees

● So, we rotate it towards the right:

Balanced BST and AVL Trees

● If we had inserted the sequence 3, 2, 1, the
situation would have been essentially the same;
the right sub-tree would be the deeper one in
that case, so we rotate towards the left in that
case.

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does
make a significant difference — we end up with
the following tree:

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does
make a significant difference — we end up with
the following tree:

Balanced BST and AVL Trees

● Inserting the sequence 3, 1, 2, however, does
make a significant difference — we end up with
the following tree:
● Clearly, we can't rotate to balance (right? why?)

Balanced BST and AVL Trees

● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and

then we're in the exact same previous case (so we
rotate towards the right)

Balanced BST and AVL Trees

● However, we can do a double rotation:
● First, rotate towards the left the sub-tree 1-2, and

then we're in the exact same previous case (so we
rotate towards the right)

● The “net” effect is the following:

Balanced BST and AVL Trees

● What about a more complicated situation?

Balanced BST and AVL Trees

● We insert the value a, which makes it into the
subtree BL, without causing any imbalance in it.

Balanced BST and AVL Trees

● We insert the value a, which makes it into the
subtree BL, without causing any imbalance in it.

Balanced BST and AVL Trees

● How do we fix the imbalance in f ? If we try to
rotate, what do we do about BR?

Balanced BST and AVL Trees

● We'll look into this during class
● Notice that once we've figured this out, we're pretty

much done:
● An insertion can only cause one of the sub-trees to

increase height by at most one.
– Since these rotations take Θ(1) (right? why?), and the

insertion takes Θ(h) = Θ(log n), then we're in good shape:
insertion (including maintaining balance) takes Θ(log n)

● We'll also see (most likely the following class) that
removals are a bit more complicated (more
inefficient), but still Θ(log n).

Balanced BST and AVL Trees

● We'll also take a look at several examples to
illustrate these rotations in actual trees.
● One interesting detail we'll discuss is that whenever

an imbalance is created, we only need to fix it at the
deepest level (that will automatically fix the
imbalance at all levels)

Balanced BST and AVL Trees

● For example, the just added 54 causes
imbalance at the root, at 55, and at 48:

Balanced BST and AVL Trees

● However, it's pretty clear that a rotation around
48 fixes the imbalance at all points!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

