

Balanced BST and AVL Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Balanced BST and AVL Trees

Standard reminder to set phones to silent/vibrate mode, please!

Balanced BST and AVL Trees

● Last time on this topic:
● Introduced AVL trees
● Discussed some of its properties, emphasizing its

height-balance attribute.
● Looked into re-balancing techniques, necessary

after insertions or removals.
● Argued that both insertion and removal operations

take Θ(log n) time, since the re-balancing is done in
constant time.

Balanced BST and AVL Trees

● During today's class:
● We'll continue on the topic of AVL trees

– Look more in detail on whether (or how) re-balancing can
really be done in constant time.

– Look into removals, and will verify that these, too, can be
done in logarithmic time (though a little slower than
insertions).

● We'll discuss some details on how to use these
Balanced BST, through an example / case-study of
indexing a set of text documents.

Balanced BST and AVL Trees

● Last time, we claimed that:
● These rotations take Θ(1), and the insertion takes

Θ(h) = Θ(log n), so we're in good shape: insertion
(including maintaining balance) takes Θ(log n)

● And I warned that there was a subtle detail that
completely ruins that argument (the part of
constant time for maintaining balance)

Balanced BST and AVL Trees

● Last time, we claimed that:
● These rotations take Θ(1), and the insertion takes

Θ(h) = Θ(log n), so we're in good shape: insertion
(including maintaining balance) takes Θ(log n)

● And I warned that there was a subtle detail that
completely ruins that argument (the part of
constant time for maintaining balance)

● So ... Anyone?

Balanced BST and AVL Trees

● Last time, we claimed that:
● These rotations take Θ(1), and the insertion takes

Θ(h) = Θ(log n), so we're in good shape: insertion
(including maintaining balance) takes Θ(log n)

● And I warned that there was a subtle detail that
completely ruins that argument (the part of
constant time for maintaining balance)

● So ... Anyone?
● Hint: how do you know that you have to

re balance?‑

Balanced BST and AVL Trees

● We observe that this requires computing
heights of every sub-tree!
● A quick analysis tells us that this takes Θ(n²)

(right? why?)

Balanced BST and AVL Trees

● We observe that this requires computing
heights of every sub-tree!
● A quick analysis tells us that this takes Θ(n²)

(right? why?)
– Computing the height for a tree takes linear time with

respect to the size of the sub-tree, and there are Θ(n)
sub-trees (arithmetic sum... again!)

Balanced BST and AVL Trees

● We observe that this requires computing
heights of every sub-tree!
● A quick analysis tells us that this takes Θ(n²)

(right? why?)
– Computing the height for a tree takes linear time with

respect to the size of the sub-tree, and there are Θ(n)
sub-trees (arithmetic sum... again!)

● Go figure — in this context, linear time would
be horrible news; and we're getting quadratic
time!

Balanced BST and AVL Trees

● Ok, so what do we do about it? (because let's
make it very clear: we want constant time for
the re-balancing, and we really won't let it go
until we have it our way !!)

Balanced BST and AVL Trees

● Ok, so what do we do about it? (because let's
make it very clear: we want constant time for
the re-balancing, and we really won't let it go
until we have it our way !!)
● Hint: there is this common trick of trading space for

computational efficiency (trade-off, really: we use
more storage to save computations, or do more
work on the computations to save storage space)

Balanced BST and AVL Trees

● How about we store, at each node, the height
of the sub-tree at that node?

Balanced BST and AVL Trees

● How about we store, at each node, the height
of the sub-tree at that node?
● If the heights don't change, this definitely works...

but unfortunately, heights do change, so we're out
of luck

Balanced BST and AVL Trees

● How about we store, at each node, the height
of the sub-tree at that node?
● If the heights don't change, this definitely works...

but unfortunately, heights do change, so we're out
of luck — right?

Balanced BST and AVL Trees

● How about we store, at each node, the height
of the sub-tree at that node?
● If the heights don't change, this definitely works...

but unfortunately, heights do change, so we're out
of luck — right?

● No, not really: heights change with insertions or
removals; but since only the heights of the nodes in
the path from root are the ones that can change,
then we can update all heights in logarithmic time
(and the insertion or removal is already taking
logarithmic time, so we're good).

Balanced BST and AVL Trees

● BTW ... what do I mean by “heights of the
nodes in the path from root are the ones that
can change”? (as opposed to “are the ones
that change”)

Balanced BST and AVL Trees

● A simple example to illustrate: Removing 3
does not change the height at node 2; inserting
5 afterwards does not change the height at
node 2 either:

Balanced BST and AVL Trees

● Updating the height for each node takes
constant time — just assign the higher of the
current (stored) height and 1 + the new height
for the sub-tree where the insertion or removal
happened.
● This is done for each node in the path from root,

and there are Θ(log n) of them.

Balanced BST and AVL Trees

● Example (storing the heights):

Balanced BST and AVL Trees

● Next, we'll take a look at removals...

Balanced BST and AVL Trees

● Removals are not that different from insertions:
● After all, they can cause an imbalance, but only in

the nodes in the path from root to the removed
element — the imbalanced is fixed with the same
rotations.

Balanced BST and AVL Trees

● Removals are not that different from insertions:
● After all, they can cause an imbalance, but only in

the nodes in the path from root to the removed
element — the imbalanced is fixed with the same
rotations.

● However, the extra complication comes from the
fact that the re-balancing of one sub-tree can cause
an imbalance higher up!

Balanced BST and AVL Trees

● Removals are not that different from insertions:
● After all, they can cause an imbalance, but only in

the nodes in the path from root to the removed
element — the imbalanced is fixed with the same
rotations.

● However, the extra complication comes from the
fact that the re-balancing of one sub-tree can cause
an imbalance higher up!
– Is this intuitive / easy to visualize?

Balanced BST and AVL Trees

● Hopefully it is (easy to visualize) — we are
reducing the height: if a removal caused an
imbalance, it is because there was a difference
of 1, and we removed the element from the
upper branch of the sub-tree
● Thus, when balancing, we reduce the height by 1,

which can clearly cause an imbalance (if the
sub tree with root at the parent had already a ‑
difference of 1, with this one being the upper one,
the removal would cause the difference to increase
to 2 — i.e., causing an imbalance).

Balanced BST and AVL Trees

● The solution is quite obvious (right?):

Balanced BST and AVL Trees

● The solution is quite obvious (right?):
● Continue checking all the way up to the root for

imbalances after fixing each imbalance.
● Let's look at an example...

Balanced BST and AVL Trees

● Consider the following AVL tree:

Balanced BST and AVL Trees

● Say that we remove the node 1:

Balanced BST and AVL Trees

● So we do — causing an imbalance at 3 (its
grandparent):

Balanced BST and AVL Trees

● So we fix it (with a single rotation, since it was
a right-right imbalance):

Balanced BST and AVL Trees

● Now we have balance at node 5, but the
maneuver caused an imbalance at node 8.
● So, we work on that one next.

Balanced BST and AVL Trees

● Looking at the imbalance at node 8, we have a
“zig-zag” type (right-left)

Balanced BST and AVL Trees

● So we fix it with a double rotation.
● But this one causes now an imbalance at node 21

(the root node).

Balanced BST and AVL Trees

● So, we address our imbalance at the root:

Balanced BST and AVL Trees

● Which is fixed with a single rotation:

3

Balanced BST and AVL Trees

● At this point, we're done — we have a valid
(balanced) AVL tree:

3

Balanced BST and AVL Trees

● Next ... How about a small dose of Reality ? :-)

Balanced BST and AVL Trees

● That is — how do we use these AVL (or any
form of Balanced Binary Search Tree) for
real life applications?‑
● These trees with just numbers are good for

understanding how things work — but they won't
get us too far in terms of real-life applications.

Balanced BST and AVL Trees

● So, as a case-study, a product that I'm working
on...

● Meet YAUSE (I'm planning to implement this
for real, and promote it and market it and
become a, what, I guess we should say a
trillionaire? Billionaires seem to be so common
nowadays that there's no longer any cachet in
it :-))

Balanced BST and AVL Trees

● My tag line (the “subtitle” or advertising slogan)
for YAUSE will be:

Balanced BST and AVL Trees

● My tag line (the “subtitle” or advertising slogan)
for YAUSE will be:
● Because all your searches deserve logarithmic

time!

Balanced BST and AVL Trees

● My tag line (the “subtitle” or advertising slogan)
for YAUSE will be:
● Because all your searches deserve logarithmic

time!
● Originally, I had phrased it as “deserve Θ(log n)

time” and with each word in a different color — but
my marketing guy convinced me to switch.

Balanced BST and AVL Trees

● My tag line (the “subtitle” or advertising slogan)
for YAUSE will be:
● Because all your searches deserve logarithmic

time!
● Originally, I had phrased it as “deserve Θ(log n)

time” and with each word in a different color — but
my marketing guy convinced me to switch.

● I know this will sound hard to believe, but he still
thinks that people will not understand the tag line;
that it does not speak to the masses, etc. *sigh*

Balanced BST and AVL Trees

● My tag line (the “subtitle” or advertising slogan)
for YAUSE will be:
● Because all your searches deserve logarithmic

time!
● Originally, I had phrased it as “deserve Θ(log n)

time” and with each word in a different color — but
my marketing guy convinced me to switch.

● I know this will sound hard to believe, but he still
thinks that people will not understand the tag line;
that it does not speak to the masses, etc. *sigh*
– Hopefully, I have here some 100+ people that will

disagree with him? :-)

Balanced BST and AVL Trees

● BTW, in case you're wondering... YAUSE
stands for Yet Another Useless Search Engine.

Balanced BST and AVL Trees

● BTW, in case you're wondering... YAUSE
stands for Yet Another Useless Search Engine.

For this part, my marketing guy did indeed
convince me that it was better to remove this
from the logo!

Balanced BST and AVL Trees

● BTW, in case you're wondering... YAUSE
stands for Yet Another Useless Search Engine.

For this part, my marketing guy did indeed
convince me that it was better to remove this
from the logo! My only guess is that maybe he
didn't like the over-used theme of each word in
a different color — don't know what else could
he had objected to!

Balanced BST and AVL Trees

● Anyway ... Back to the serious stuff that we
need to do (or I would never become a
trillionaire!)

Balanced BST and AVL Trees

● The idea being to create an index of search
keywords for a bunch of documents — literally,
like the index at the end of a book that makes it
possible for us to find out what page to go if we
need info on some particular word.
● The indexed words appear alphabetically (in

lexicographical order), allowing us to do the
equivalent of a binary search, and it works as an
associative container — it associates keywords with
a list of page numbers.

Balanced BST and AVL Trees

● The idea being to create an index of search
keywords for a bunch of documents — literally,
like the index at the end of a book that makes it
possible for us to find out what page to go if we
need info on some particular word.
● The indexed words appear alphabetically (in

lexicographical order), allowing us to do the
equivalent of a binary search

● This index works as an associative container — it
associates keywords with a list of page numbers.

Balanced BST and AVL Trees

● We want something like this — but dynamic, so
that we can add and remove documents from
the indexed set!

Balanced BST and AVL Trees

● So, we want something like a tree where the
elements are not just numbers, but are objects
that encapsulate {key, value} pairs (recall that
this was the standard terminology for
associative containers).
● Of course, it better be a Balanced Binary Search

Tree, if we want it to work efficiently.

Balanced BST and AVL Trees
class Index_pair
{
 string d_keyword;
 std::list<string> d_documents;
 // filenames of the matching documents (could be
 // list of URLs, if this was a web search engine),
 // or list of pointers, if all is in memory

public:
 Node (const string & keyword, const string & doc);

 string keyword() const;
 void add_document (const string & filename);

 void print_documents() const;
};

Balanced BST and AVL Trees
class Index_pair
{
 string d_keyword;
 std::list<string> d_documents;
 // filenames of the matching documents (could be
 // list of URLs, if this was a web search engine),
 // or list of pointers, if all is in memory

public:
 Node (const string & keyword, const string & doc);

 string keyword() const;
 void add_document (const string & filename);

 void print_documents() const;
};

 // then, at some point, declare the tree:
AVL_tree<Index_pair> index;

Balanced BST and AVL Trees

● One detail: the tree requires linearly ordered
values, and it assumes the less-than relation
through the use of < in its implementation.
● The first part is not a problem (keywords are

linearly ordered — lexicographical order!)

Balanced BST and AVL Trees

● One detail: the tree requires linearly ordered
values, and it assumes the less-than relation
through the use of < in its implementation.
● The first part is not a problem (keywords are

linearly ordered — lexicographical order!)
● But the less-than operator works well with integers

(like in our “silly” visual examples)
● What about less-than being used with two

Index_pair objects?
– It should do a lexicographical comparison of the

keywords.... but, how?

Balanced BST and AVL Trees

● In C++, we would definitely want to make use of
operator overloading for this situation:
● We define functions that do comparisons, and

name them operator__ , so that when we use the
given operator, the compiler will know that it should
invoke that function to get the work done.

Balanced BST and AVL Trees

● In this case, we want something like this:

bool operator< (const Index_pair & p1, const Index_pair & p2)
{
 return p1.keyword() < p2.keyword();
}

bool operator== (const Index_pair & p1, const Index_pair & p2)
{
 return p1.keyword() == p2.keyword();
}

bool operator<= (const Index_pair & p1, const Index_pair & p2)
{
 return p1.keyword() <= p2.keyword();
}

// etc.

Balanced BST and AVL Trees

● With this, we're pretty much done:
● Indexing a document involves reading its content,

isolating words, and locating the node for that word
(or insert it, if it's not present) and append the
document to the list of documents that contain this
keyword!

● Code could be something like this:
(you may need to read up a little bit on file IO in C++, as
well as possibly strings and string manipulation)

Balanced BST and AVL Trees
void index_document (const string & filename)
{
 ifstream document (filename.c_str());

 string keyword;
 while (document >> keyword)
 {
 if (valid_word (keyword)) // some validation function
 {
 Node<Index_pair> * pair = index.find (keyword);
 if (pair != NULL)
 {
 pair->retrieve().add_document (filename);
 }
 else
 {
 index.insert (Index_pair(keyword, filename));
 }
 }
 }
}

Balanced BST and AVL Trees

● Searching would simply be something like:

void print_search_results (const string & keyword)
{
 Node<Index_pair> * pair = index.find (keyword);
 if (pair != NULL)
 {
 pair->retrieve().print_documents();
 }
 else
 {
 cout << “Your search for ” << keyword << “ did not ”
 “match any documents” << endl;
 }
}

Summary

● During today's class:
● We conclude the topic of AVL trees

– Discussed re-balancing efficiency.
– Discussed removals and saw how to handle the

re balancing in this case.‑
● Discussed some details on how to use/implement

these Balanced BST through an example /
case study of indexing a set of text documents.‑

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

