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M-way Trees and B-Trees

Standard reminder to set phones to 
silent/vibrate mode, please!



  

M-way Trees and B-Trees

● Once upon a time... in a course that we all like 
to call ECE-250...
● We talked about trees (hierarchical data structures)
● In particular, binary search trees (non-hierarchical; 

just take advantage of the tree structure)
– Including balanced binary search trees  (we talked about 

AVL trees)



  

M-way Trees and B-Trees

● Today, we'll discuss:
● M-Way trees

– In-order traversal of an M-way tree
● B-Trees

– Only basic concepts and rationale
● The details will be optional material — meaning that it will be the 

topic for bonus marks questions on the assignments and on the 
final.



  

M-way Trees and B-Trees

● M-Way Trees
● Not to be confused with N-ary trees, which are trees 

where the nodes have a fixed number of children 
(binary trees being a particular case, with N=2)
 

● M-Way Trees are trees where the nodes store 
multiple values.
– They are search trees (just not binary)

● They also have multiple children (a fixed number of 
them, unlike with general trees)



  

M-way Trees and B-Trees

● M-Way Trees
● In particular, a node in an M-Way tree has:

– M-1 data values
– M children

● Notice:  A Binary search tree is a particular case of 
an M-Way tree (M = ?)



  

M-way Trees and B-Trees

● M-Way Trees
● The constraint that makes them search trees is that 

for each node in the tree, the values in the noide's 
sub-trees are related to the values in the node:
– If the values are {v1, v2, · · · , vM-2} and the children 

(sub trees) are {T‑ 1, T2, · · · , TM-1}, then:

● Every value in the tree Tk (1 < k < M-1) is between vk-1 and vk
● For T1, every value in the tree is less than v1

● For TM-1, every value in the tree is greater than vM-2



  

M-way Trees and B-Trees

● M-Way Trees
● Example for a 4-Way tree:

7 20 45

9 12 17 26 31 39 46 53 712 5 6



  

M-way Trees and B-Trees

● M-Way Trees
● Example for a 4-Way tree:

● For in-order traversal, we extend the idea from 
binary trees:  first, visit child Tk, then process value 
vk, then visit child Tk+1.

7 20 45

9 12 17 26 31 39 46 53 712 5 6



  

M-way Trees and B-Trees

● M-Way Trees
● Example for a 4-Way tree:

 

● BTW...  Do you notice anything interesting about 
this tree?  (Hint:  it contains 15 values)

7 20 45

9 12 17 26 31 39 46 53 712 5 6



  

M-way Trees and B-Trees

● M-Way Trees
● The main point with M-Way trees is to reduce the 

height !
● Of course, in terms of Landau symbols, there's no 

improvement — we're still Ω(log n), with Θ(log n) 
being reached if the tree is balanced.

● But we have an improvement with respect to binary 
trees (a reduction of the height) by a constant factor 
of ....  (you guys tell me?)



  

M-way Trees and B-Trees

● M-Way Trees
● The main point with M-Way trees is to reduce the 

height !
● Of course, in terms of Landau symbols, there's no 

improvement — we're still Ω(log n), with Θ(log n) 
being reached if the tree is balanced.

● But we have an improvement with respect to binary 
trees (a reduction of the height) by a constant factor 
of ....  Right, lg(M):



  

M-way Trees and B-Trees

● M-Way Trees
● The number of nodes for an M-way tree of height h 

grows with Mh — thus, the height goes with logM n, 
and we have:

n= M logM n ⇒ log2n= log2M
logM n

= log2(M )⋅ logM n



  

M-way Trees and B-Trees

● M-Way Trees
● Advantage:  More efficient  (though only by a 

constant speedup factor).
● Disadvantage:  More complex structure
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● M-Way Trees
● Advantage:  More efficient  (though only by a 

constant speedup factor).
● Disadvantage:  More complex structure
● When is this extra complexity justified?

– Generally speaking, when the extra efficiency is 
necessary.

– One particular situation is when moving from one node to 
another is particularly expensive.

● What would be an example where that would be the case?



  

M-way Trees and B-Trees

● M-Way Trees
● Advantage:  More efficient  (though only by a 

constant speedup factor).
● Disadvantage:  More complex structure
● When is this extra complexity justified?

– Generally speaking, when the extra efficiency is 
necessary.

– One particular situation is when moving from one node to 
another is particularly expensive.

● What would be an example where that would be the case?

Hint:  What in a computer can be particularly slow?



  

M-way Trees and B-Trees

● B-Trees use this approach (among several 
other aspects) to store data on permanent 
storage (hard disk).
● Typically used for database systems.
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● B-Trees use this approach (among several 
other aspects) to store data on permanent 
storage (hard disk).
● Typically used for database systems.
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M-way Trees and B-Trees

● B-Trees
● Two key aspects that affect the design of this data 

structure:
– Hard disks are slow — scratch that...
– Hard disks are  slooooooooowwww....

● They are mechanical beasts living in an electronic circuits world!



  

M-way Trees and B-Trees

● B-Trees
● Two key aspects that affect the design of this data 

structure:
– Hard disks are slow — scratch that...
– Hard disks are  slooooooooowwww....

● They are mechanical beasts living in an electronic circuits world!
  

– The other aspect being:  access is by blocks  (typical unit 
is 4kbytes — reading 1 byte or reading 4kbytes takes 
essentially the same amount of time)



  

M-way Trees and B-Trees

● About hard disks speed...
● Two key parameters:

– Access time
– Transfer speed

● Transfer speed is not that bad — once we start 
reading data, typically things move rather fast  
(hundreds of megabytes per second)

● However, access time results from the head having 
to move (as in, mechanical movement) to the right 
place to read the data



  

M-way Trees and B-Trees

● About hard disks speed...
● Two key parameters:

– Access time
– Transfer speed

● Transfer speed is not that bad — once we start 
reading data, typically things move rather fast  
(hundreds of megabytes per second)

● However, access time results from the head having 
to move (as in, mechanical movement) to the right 
place to read the data — typical figures in the order 
of 10 ms!!  (that's an incredibly slow 100 Hz !!!!!)



  

M-way Trees and B-Trees

● B-Trees take these aspects into consideration 
by:
● Storing internal nodes as 512-Way trees  (why 512? 

A disk block is 4k, and typical key+pointer 
combinations are 8 bytes per item)
– Nice side-effect:  we load entire nodes into memory with 

a single disk access.



  

M-way Trees and B-Trees

● B-Trees take these aspects into consideration 
by:
● Storing internal nodes as 512-Way trees  (why 512? 

A disk block is 4k, and typical key+pointer 
combinations are 8 bytes per item)
– Nice side-effect:  we load entire nodes into memory with 

a single disk access.
● But more importantly:  we dramatically reduce the 

amount of disk accesses (notice that descending to 
each child node requires a new disk access — i.e., 
another 10 ms!!)
– Why do we reduce the amount of accesses?



  

M-way Trees and B-Trees

● B-Trees take these aspects into consideration 
by:
● Amount of disk accesses goes with the height of the 

tree  (we're following the nodes, until reaching the 
appropriate leaf node, which is where the data is), 
and there are h = logM(n) of them.



  

M-way Trees and B-Trees

● B-Trees take these aspects into consideration 
by:
● Amount of disk accesses goes with the height of the 

tree  (we're following the nodes, until reaching the 
appropriate leaf node, which is where the data is), 
and there are h = logM(n) of them.

– M = 512 = 29, meaning 9 times fewer disk accesses than 
with a binary search tree!



  

M-way Trees and B-Trees

● B-Trees are in a sense a “hybrid” structure:  
internal nodes are M-Way trees, and leaf nodes 
are just a block of records  (essentially, a plain 
node containing an array structure)



  

M-way Trees and B-Trees

● B-Trees are in a sense a “hybrid” structure:  
internal nodes are M-Way trees, and leaf nodes 
are just a block of records  (essentially, a plain 
node containing an array structure)
● We make leaf nodes also the size of a block (4k), to 

make the most out of each disk access.



  

M-way Trees and B-Trees

● Additionally, the balancing is done in a way that 
we ensure that all leaf nodes are at the same 
depth.
● Access time is uniform for all data in the database.



  

M-way Trees and B-Trees

● B-Trees take these aspects into consideration 
by:
● Additionally, the balancing is done in a way that we 

ensure that all leaf nodes are at the same depth.
– Access time is uniform for all data in the database.

● We observe that we need to do array searches and 
various operations in memory — the point being, 
that time is negligible compared to disk access 
time;  so really, the issues of asymptotic analysis 
when talking about data structure for disk storage 
become a secondary issue!



  

Summary

● During today's lesson:
● Looked into the notion of M-Way trees
● Discussed advantages, disadvantages, and when 

they are justified
● Discussed the basic notions and rationale for 

B Trees.‑
– Search structure for disk storage of data  (e.g., database 

systems)
– Slow access time  +  block-based access:

● Minimize number of accesses by widening the tree, thus 
reducing the height

● Nodes are just wide enough that they fit within one 4k disk block
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