

M-way Trees and B-Trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

M-way Trees and B-Trees

Standard reminder to set phones to
silent/vibrate mode, please!

M-way Trees and B-Trees

● Once upon a time... in a course that we all like
to call ECE-250...
● We talked about trees (hierarchical data structures)
● In particular, binary search trees (non-hierarchical;

just take advantage of the tree structure)
– Including balanced binary search trees (we talked about

AVL trees)

M-way Trees and B-Trees

● Today, we'll discuss:
● M-Way trees

– In-order traversal of an M-way tree
● B-Trees

– Only basic concepts and rationale
● The details will be optional material — meaning that it will be the

topic for bonus marks questions on the assignments and on the
final.

M-way Trees and B-Trees

● M-Way Trees
● Not to be confused with N-ary trees, which are trees

where the nodes have a fixed number of children
(binary trees being a particular case, with N=2)

● M-Way Trees are trees where the nodes store
multiple values.
– They are search trees (just not binary)

● They also have multiple children (a fixed number of
them, unlike with general trees)

M-way Trees and B-Trees

● M-Way Trees
● In particular, a node in an M-Way tree has:

– M-1 data values
– M children

● Notice: A Binary search tree is a particular case of
an M-Way tree (M = ?)

M-way Trees and B-Trees

● M-Way Trees
● The constraint that makes them search trees is that

for each node in the tree, the values in the noide's
sub-trees are related to the values in the node:
– If the values are {v1, v2, · · · , vM-2} and the children

(sub trees) are {T‑ 1, T2, · · · , TM-1}, then:

● Every value in the tree Tk (1 < k < M-1) is between vk-1 and vk
● For T1, every value in the tree is less than v1

● For TM-1, every value in the tree is greater than vM-2

M-way Trees and B-Trees

● M-Way Trees
● Example for a 4-Way tree:

7 20 45

9 12 17 26 31 39 46 53 712 5 6

M-way Trees and B-Trees

● M-Way Trees
● Example for a 4-Way tree:

● For in-order traversal, we extend the idea from
binary trees: first, visit child Tk, then process value
vk, then visit child Tk+1.

7 20 45

9 12 17 26 31 39 46 53 712 5 6

M-way Trees and B-Trees

● M-Way Trees
● Example for a 4-Way tree:

● BTW... Do you notice anything interesting about
this tree? (Hint: it contains 15 values)

7 20 45

9 12 17 26 31 39 46 53 712 5 6

M-way Trees and B-Trees

● M-Way Trees
● The main point with M-Way trees is to reduce the

height !
● Of course, in terms of Landau symbols, there's no

improvement — we're still Ω(log n), with Θ(log n)
being reached if the tree is balanced.

● But we have an improvement with respect to binary
trees (a reduction of the height) by a constant factor
of (you guys tell me?)

M-way Trees and B-Trees

● M-Way Trees
● The main point with M-Way trees is to reduce the

height !
● Of course, in terms of Landau symbols, there's no

improvement — we're still Ω(log n), with Θ(log n)
being reached if the tree is balanced.

● But we have an improvement with respect to binary
trees (a reduction of the height) by a constant factor
of Right, lg(M):

M-way Trees and B-Trees

● M-Way Trees
● The number of nodes for an M-way tree of height h

grows with Mh — thus, the height goes with logM n,
and we have:

n= M logM n ⇒ log2n= log2M
logM n

= log2(M)⋅ logM n

M-way Trees and B-Trees

● M-Way Trees
● Advantage: More efficient (though only by a

constant speedup factor).
● Disadvantage: More complex structure

M-way Trees and B-Trees

● M-Way Trees
● Advantage: More efficient (though only by a

constant speedup factor).
● Disadvantage: More complex structure
● When is this extra complexity justified?

M-way Trees and B-Trees

● M-Way Trees
● Advantage: More efficient (though only by a

constant speedup factor).
● Disadvantage: More complex structure
● When is this extra complexity justified?

– Generally speaking, when the extra efficiency is
necessary.

M-way Trees and B-Trees

● M-Way Trees
● Advantage: More efficient (though only by a

constant speedup factor).
● Disadvantage: More complex structure
● When is this extra complexity justified?

– Generally speaking, when the extra efficiency is
necessary.

– One particular situation is when moving from one node to
another is particularly expensive.

M-way Trees and B-Trees

● M-Way Trees
● Advantage: More efficient (though only by a

constant speedup factor).
● Disadvantage: More complex structure
● When is this extra complexity justified?

– Generally speaking, when the extra efficiency is
necessary.

– One particular situation is when moving from one node to
another is particularly expensive.

● What would be an example where that would be the case?

M-way Trees and B-Trees

● M-Way Trees
● Advantage: More efficient (though only by a

constant speedup factor).
● Disadvantage: More complex structure
● When is this extra complexity justified?

– Generally speaking, when the extra efficiency is
necessary.

– One particular situation is when moving from one node to
another is particularly expensive.

● What would be an example where that would be the case?

Hint: What in a computer can be particularly slow?

M-way Trees and B-Trees

● B-Trees use this approach (among several
other aspects) to store data on permanent
storage (hard disk).
● Typically used for database systems.

M-way Trees and B-Trees

● B-Trees use this approach (among several
other aspects) to store data on permanent
storage (hard disk).
● Typically used for database systems.

M-way Trees and B-Trees

● B-Trees
● Two key aspects that affect the design of this data

structure:

M-way Trees and B-Trees

● B-Trees
● Two key aspects that affect the design of this data

structure:
– Hard disks are slow

M-way Trees and B-Trees

● B-Trees
● Two key aspects that affect the design of this data

structure:
– Hard disks are slow — scratch that...
– Hard disks are slooooooooowwww....

● They are mechanical beasts living in an electronic circuits world!

M-way Trees and B-Trees

● B-Trees
● Two key aspects that affect the design of this data

structure:
– Hard disks are slow — scratch that...
– Hard disks are slooooooooowwww....

● They are mechanical beasts living in an electronic circuits world!

– The other aspect being: access is by blocks (typical unit
is 4kbytes — reading 1 byte or reading 4kbytes takes
essentially the same amount of time)

M-way Trees and B-Trees

● About hard disks speed...
● Two key parameters:

– Access time
– Transfer speed

● Transfer speed is not that bad — once we start
reading data, typically things move rather fast
(hundreds of megabytes per second)

● However, access time results from the head having
to move (as in, mechanical movement) to the right
place to read the data

M-way Trees and B-Trees

● About hard disks speed...
● Two key parameters:

– Access time
– Transfer speed

● Transfer speed is not that bad — once we start
reading data, typically things move rather fast
(hundreds of megabytes per second)

● However, access time results from the head having
to move (as in, mechanical movement) to the right
place to read the data — typical figures in the order
of 10 ms!! (that's an incredibly slow 100 Hz !!!!!)

M-way Trees and B-Trees

● B-Trees take these aspects into consideration
by:
● Storing internal nodes as 512-Way trees (why 512?

A disk block is 4k, and typical key+pointer
combinations are 8 bytes per item)
– Nice side-effect: we load entire nodes into memory with

a single disk access.

M-way Trees and B-Trees

● B-Trees take these aspects into consideration
by:
● Storing internal nodes as 512-Way trees (why 512?

A disk block is 4k, and typical key+pointer
combinations are 8 bytes per item)
– Nice side-effect: we load entire nodes into memory with

a single disk access.
● But more importantly: we dramatically reduce the

amount of disk accesses (notice that descending to
each child node requires a new disk access — i.e.,
another 10 ms!!)
– Why do we reduce the amount of accesses?

M-way Trees and B-Trees

● B-Trees take these aspects into consideration
by:
● Amount of disk accesses goes with the height of the

tree (we're following the nodes, until reaching the
appropriate leaf node, which is where the data is),
and there are h = logM(n) of them.

M-way Trees and B-Trees

● B-Trees take these aspects into consideration
by:
● Amount of disk accesses goes with the height of the

tree (we're following the nodes, until reaching the
appropriate leaf node, which is where the data is),
and there are h = logM(n) of them.

– M = 512 = 29, meaning 9 times fewer disk accesses than
with a binary search tree!

M-way Trees and B-Trees

● B-Trees are in a sense a “hybrid” structure:
internal nodes are M-Way trees, and leaf nodes
are just a block of records (essentially, a plain
node containing an array structure)

M-way Trees and B-Trees

● B-Trees are in a sense a “hybrid” structure:
internal nodes are M-Way trees, and leaf nodes
are just a block of records (essentially, a plain
node containing an array structure)
● We make leaf nodes also the size of a block (4k), to

make the most out of each disk access.

M-way Trees and B-Trees

● Additionally, the balancing is done in a way that
we ensure that all leaf nodes are at the same
depth.
● Access time is uniform for all data in the database.

M-way Trees and B-Trees

● B-Trees take these aspects into consideration
by:
● Additionally, the balancing is done in a way that we

ensure that all leaf nodes are at the same depth.
– Access time is uniform for all data in the database.

● We observe that we need to do array searches and
various operations in memory — the point being,
that time is negligible compared to disk access
time; so really, the issues of asymptotic analysis
when talking about data structure for disk storage
become a secondary issue!

Summary

● During today's lesson:
● Looked into the notion of M-Way trees
● Discussed advantages, disadvantages, and when

they are justified
● Discussed the basic notions and rationale for

B Trees.‑
– Search structure for disk storage of data (e.g., database

systems)
– Slow access time + block-based access:

● Minimize number of accesses by widening the tree, thus
reducing the height

● Nodes are just wide enough that they fit within one 4k disk block

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

