

Priority queues and Heaps

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

http://xkcd.com/835/

Priority queues and Heaps

Standard reminder to set phones to
silent/vibrate mode, please!

Priority queues and Heaps

● During today's lesson:
● Introduce the notion of priority queues
● Consider some “obvious” implementations (an array

of queues; a balanced binary search tree)
● Introduce the Heap data structure, which provides a

more efficient implementation alternative for priority
queues
– Discuss the various operations on a heap and their run

time.

Priority queues and Heaps

● Priority queues are rather easy to define:
● As the name suggests, they're queues where the

elements have priorities associated to them.
● We could look at it by analogy with real-life

examples of FIFO structures: a line waiting to be
served at a bank (or for the cash registers at a
store, etc.)
– It makes sense that they will serve first those who have

been waiting the longest.

Priority queues and Heaps

● Priority queues are rather easy to define:
● As the name suggests, they're queues where the

elements have priorities associated to them.
● We could look at it by analogy with real-life

examples of FIFO structures: a line waiting to be
served at a bank (or for the cash registers at a
store, etc.)
– It makes sense that they will serve first those who have

been waiting the longest.
● Except if, for example, a senior or a disabled person arrives in

the line — either by policy or by simple courtesy, the common
practice is: even if they arrived after, they are served first.

Priority queues and Heaps

● In this example, we're all following the scheme
of “first-arrive-first-served” — but seniors have
higher priority than non-seniors.
● So, as long as there are seniors in line, they will be

served first, no matter how long we've been waiting,
and regardless of whether a senior person arrived
just two seconds ago.

● Disabled persons presumably have higher
priority than seniors — same principle.

Priority queues and Heaps

● We could visualize this as a set of queues:
● Disabled persons have a designated line; seniors

have a designated, separate, line; and the rest
have a separate line.

Priority queues and Heaps

● We could visualize this as a set of queues:
● Disabled persons have a designated line; seniors

have a designated, separate, line; and the rest
have a separate line.

● The serve protocol is: check first the line for
disabled persons — if there is someone, serve the
first one in line there. If no-one in line, then check
the line for seniors; and so on, until checking the
line with lowest priority.

Priority queues and Heaps

● This automatically suggests an obvious
implementation strategy:
● Use an array of queues.
● Assign a non-negative integer number to represent

the priority: 0 represents the highest priority; the
larger the number, the lower the priority.

● Use the priority as the subscript for the array (to
get to the corresponding queue)

Priority queues and Heaps

● Two disadvantages:
● Limited — it is feasible (in a reasonable way) if we

have a fixed number of priorities (good enough for
many applications, but not good enough — mostly
because we can do better than that)

Priority queues and Heaps

● Two disadvantages:
● Limited — it is feasible (in a reasonable way) if we

have a fixed number of priorities (good enough for
many applications, but not good enough — mostly
because we can do better than that)

● Not efficient
– Can you see why?

Priority queues and Heaps

● Two disadvantages:
● Limited — it is feasible (in a reasonable way) if we

have a fixed number of priorities (good enough for
many applications, but not good enough — mostly
because we can do better than that)

● Not efficient
– Can you see why?

● If we have m priorities, then we have an array of m queues, and
looking for the “next-in-line” takes Θ(m)

Priority queues and Heaps

● We could turn this into a sorting scheme by
thinking of the queue as a sorted list, where we
sort by two criteria:
● First, by priority
● Then, for equal priorities, sort by arrival order

● This is a lexicographical order ... right? (why?)

Priority queues and Heaps

● If we keep a counter k and increase it every
time we insert an element, then the pair (p,k),
where p is the priority, provides the appropriate
order:

(p1, k 1) < (p2, k 2) ⇔ p1 < p2 or
p1 = p2 and k 1 < k 2

Priority queues and Heaps

● With this, we could simply use a balanced
binary search tree (e.g., an AVL tree) using that
pair as the value being inserted.

● An AVL tree maintains the elements in order
with insertions and removals taking logarithmic
time.

● However, the implementation is more
complicated than it could be, as we'll see next,
when looking into Heaps.

Priority queues and Heaps

● Heaps are a particular type of binary trees.
● We'll provide a recursive definition:
● A binary tree of height 0 is a heap.
● A non-empty binary tree is a heap if:

● The root node is less than the values in either of the
sub-trees (if present).

● Both sub-trees are themselves heaps.

Priority queues and Heaps

● An alternative way to phrase that is:
● A non-empty binary tree is a heap if for every

internal (non-leaf) node, every strict descendant is
greater than the node.

Priority queues and Heaps

● Important “fine print” in that definition:
● Sibling elements — or in general elements in the

two sub trees have NO RELATIONSHIP ‑
WHATSOEVER!!

We know that b < a and that c < a; that says
absolutely nothing about b as compared to, or
related to, c.

b

a

c

Priority queues and Heaps

● This is an example of a heap:

Priority queues and Heaps

● This is an example of a heap:
● We have to keep this notion

completely apart from the
notions of binary search
trees. For example:
● The smallest value (7) and

the largest value (89) are
both in the left sub-tree.

Priority queues and Heaps

● We can obviously find the lowest value in
constant time: right? how?

Priority queues and Heaps

● We can obviously find the lowest value in
constant time: right? How?
● Yes, this one is too obvious to bother writing the

answer in the slides :-)

Priority queues and Heaps

● Removing the lowest element (which is the
operation corresponding to “serve the next in
line”) is rather simple, and presumably efficient:
● Promote the node at the root of the sub-tree which

has the least value.
● Repeat the same for that sub-tree, all the way down

until reaching a leaf node.

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● Question: why is it efficient? (why do I say
presumably?)

Priority queues and Heaps

● Question: why is it efficient? (why do I say
presumably?)
● As you may have noticed, removal takes O(h), and

presumably, h is small (right? why? And again, why
presumably?)

Priority queues and Heaps

● Inserting an element can also be presumably
efficient:
● Create a leaf node with the inserted value, and then

adjust.

Priority queues and Heaps

● Let's look at an example — inserting 17 in the
heap below:

Priority queues and Heaps

● 17 < 32, so we need to swap them:

Priority queues and Heaps

● It is also < 31, so we swap these as well:

Priority queues and Heaps

● < 19, so we swap, and we're done, since
17 > 12:

Priority queues and Heaps

● Notice that when swapping down a node, we don't
need to check anything further for that node — for
example, 19 was already less than anything in that
sub-tree, so it can not need any further swaps:

Priority queues and Heaps

● BTW, this process is called percolation — the
heavier (higher) elements “percolate” down:

Priority queues and Heaps

● However

Priority queues and Heaps

● However we want to do insertions in a way
that maintains a balanced tree!

Priority queues and Heaps

● However we want to do insertions in a way
that maintains a balanced tree!
● One rather neat way to do this is ensuring that we

always have a complete binary tree!
– (and BTW, when we say a complete binary tree, this

carries a piece of good news with it ... right?)

Priority queues and Heaps

● However we want to do insertions in a way
that maintains a balanced tree!
● One rather neat way to do this is ensuring that we

always have a complete binary tree!
– (and BTW, when we say a complete binary tree, this

carries a piece of good news with it ... right?)
● So, we insert a leaf node, and adjust (you recall that

with complete trees, you can only insert at the
position following a “breadth-first” traversal — or
rather, as if we were doing a breadth-first traversal)

Priority queues and Heaps

● BTW, the fact that we can get away with
ensuring a complete binary tree is one of the
advantages over a balanced binary search tree
such as an AVL — maintaining a complete
binary tree ensures balance with much lower
overhead than that of a general balanced BST
such as AVL trees.

Priority queues and Heaps

● Example: let's try inserting 25 into the following
heap:

Priority queues and Heaps

● Example: let's try inserting 25 into the following
heap:

Priority queues and Heaps

● Since 25 < 36, we have to swap those. Now,
25 < 33, so we need to swap those at the
second iteration — then we're done, since
25 > 17

Priority queues and Heaps

● And the resulting tree is a complete tree.

Priority queues and Heaps

● So, as long as we maintain a complete binary
tree, we know its height h = Θ(log n), and thus
the two important operations (enqueue and
dequeue) have a worst-case run time Θ(log n)

Priority queues and Heaps

● So, as long as we maintain a complete binary
tree, we know its height h = Θ(log n), and thus
the two important operations (enqueue and
dequeue) have a worst-case run time Θ(log n)
● Well... except that it gets better!!

Priority queues and Heaps

● When we insert an element at the bottom (as a
leaf node), do we need to do h swaps?

Priority queues and Heaps

● When we insert an element at the bottom (as a
leaf node), do we need to do h swaps?
● We certainly need to in the worst-case.... But what

about the average case?

Priority queues and Heaps

● When we insert an element at the bottom (as a
leaf node), do we need to do h swaps?
● We certainly need to in the worst-case.... But what

about the average case?
● Would it stop half way on average?

Priority queues and Heaps

● When we insert an element at the bottom (as a
leaf node), do we need to do h swaps?
● We certainly need to in the worst-case.... But what

about the average case?
● Would it stop half way on average?

– That wouldn't be such great news — it would still be
Θ(log n) ... That is, it would be good, but not that good.

Priority queues and Heaps

● Given the exponential nature of the number of
leaf nodes (there are as many leaf nodes as
internal nodes in a perfect tree — so, at depth
d+1, there are twice as many nodes at as
depth d)

Priority queues and Heaps

● Given the exponential nature of the number of
leaf nodes (there are as many leaf nodes as
internal nodes in a perfect tree — so, at depth
d+1, there are twice as many nodes at as
depth d)

● So, when a node is swapped to one level up,
how does it compare against the rest of the
elements at higher depth?

Priority queues and Heaps

● Given the exponential nature of the number of
leaf nodes (there are as many leaf nodes as
internal nodes in a perfect tree — so, at depth
d+1, there are twice as many nodes at as
depth d)

● So, when a node is swapped to one level up,
how does it compare against the rest of the
elements at higher depth?
● By definition, there is absolutely no relationship

between the data in different branches But

Priority queues and Heaps

● Because of the constraint that sub-trees below
one given node have all values greater than the
node, we have that, on average, assuming
random data, evenly distributed, then the
behaviour is that nodes at depth d are less than
nodes at depth d+1.

Priority queues and Heaps

● Because of the constraint that sub-trees below
one given node have all values greater than the
node, we have that, on average, assuming
random data, evenly distributed, then the
behaviour is that nodes at depth d are less than
nodes at depth d+1.
● Thus, each time a node goes up one level, it is, on

average, past half of the remaining elements!
● So, after the first swap, on half of the cases it won't

require any additional swaps; thus, average
number of swaps is 1 !!

Priority queues and Heaps

● The actual math goes more or less as follows:
● After k swaps (0 ≤ k ≤ h), we are at lower depth

than 2(h−k) elements, and we're interested in the
probability of being above the parent node; this
probability is given by the fraction 2(h−k) / n.

Priority queues and Heaps

● The actual math goes more or less as follows:
● After k swaps (0 ≤ k ≤ h), we are at lower depth

than 2(h−k) elements, and we're interested in the
probability of being above the parent node; this
probability is given by the fraction 2(h−k) / n.

● We get the average case by computing the
weighted average of the number of swaps (the
weights being those probabilities):

Priority queues and Heaps

● The actual math goes more or less as follows:
● After k swaps (0 ≤ k ≤ h), we are at lower depth

than 2(h−k) elements, and we're interested in the
probability of being above the parent node; this
probability is given by the fraction 2(h−k) / n.

● We get the average case by computing the
weighted average of the number of swaps (the
weights being those probabilities):

Avg. swaps = ∑
k=0

h

k⋅
2(h−k)

n
=

2h+1−h−2
n

= Θ(1)

Priority queues and Heaps

● So, this is great news — we have the following
run times:
● Insertion: Θ(log n) worst-case

 Θ(1) average-case
● Removal: Θ(log n) worst-case and average-case

● This is definitely much better than with
balanced binary search trees.

Priority queues and Heaps

● Food for thought: why did this happen? Why, if
we have a binary search tree structure in both
cases, and we're in a sense putting data in
order, why did we get something so radically
faster with binary heaps?

Priority queues and Heaps

● I'm actually leaving that one for you guys to
think about it

Priority queues and Heaps

● There's one additional detail, though:
● When removing (the root element), how do we

guarantee that the resulting tree will be a complete
binary tree? (in the tree below, we won't end up
promoting 88 — which is the only way in which we
would end up with a complete binary tree)

Priority queues and Heaps

● There's one additional detail, though:
● We'd end up promoting 39 and leaving a hole there

(in this case, we could move 88 to that position; but
in general, we have no guarantee that we'll be able
to ... right? why?).

Priority queues and Heaps

● There's one additional detail, though:
● We'd end up promoting 39 and leaving a hole there

(in this case, we could move 88 to that position; but
in general, we have no guarantee that we'll be able
to ... right? why?). So, any ideas ?

Priority queues and Heaps

● There are actually two possibilities:
● Either move the 88 to the hole left by the removal

and then adjust (as if we were doing an insertion;
percolate it to its corresponding position).

● Or move the last entry to the root, and then
percolate it down.

Priority queues and Heaps

● Coming back to the issue of ordering by
comparing pairs (p, k) — priority + order of
arrival...

● Let's look at how this works with heaps:

Priority queues and Heaps

● Coming back to the issue of ordering by
comparing pairs (p, k) — priority + order of
arrival...

● Let's look at how this works with heaps:
● Let's say that we insert 7 elements, all with priority

2. The counter k would then go from 0 to 6, and the
heap could end up as follows:

Priority queues and Heaps

● Now removing them:
● We extract the element at the root:

Priority queues and Heaps

● Now removing them:
● We extract the element at the root: (2,6) goes up,

then swapped with (2,1), then (2,3)

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:

Priority queues and Heaps

● One last detail — perhaps the “cool upon cool”
of all features of this binary heap:
● Because we always maintain a complete binary

tree, then we can implement it as an array !!
● Leaving the first cell (subscript 0) unused:

– Children of node k (i.e., value at subscript k of the array)
are 2k and 2k+1.

– Parent of node k is k ÷ 2 (as in, integer division)

Priority queues and Heaps

● One last detail — perhaps the “cool upon cool”
of all features of this binary heap:
● Because we always maintain a complete binary

tree, then we can implement it as an array !!
● Leaving the first cell (subscript 0) unused:

– Children of node k (i.e., value at subscript k of the array)
are 2k and 2k+1.

– Parent of node k is k ÷ 2 (as in, integer division)
● So here's a radical idea: maybe we will be able to

use heaps to sort data! Since it is all in an array,
sounds like we're in business...

Priority queues and Heaps

● Sorting using heaps ...
● One important obstacle we'd have to clear:

– Can it be done in-place? Sounds like we'd need to take
the data from the array (arbitrary and unconstrained data)
and insert the elements into a heap.

Priority queues and Heaps

● Sorting using heaps ...
● One important obstacle we'd have to clear:

– Can it be done in-place? Sounds like we'd need to take
the data from the array (arbitrary and unconstrained data)
and insert the elements into a heap.

● That will actually be our next topic — the truly
remarkable Heap Sort algorithm!

Summary

● During today's lesson:
● Introduced the notion of priority queues
● Discussed some “obvious”, but not too efficient,

implementations (array of queues; balanced binary
search tree)

● Looked into the Heap data structure, for a more
efficient implementation alternative for priority
queues.
– Discussed operations on a heap and their run time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

