Priority queues and Heaps

Carlos Moreno

cmoreno@uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

These slides, the course material, and course web site are based on work by Douglas W. Harder
Priority queues and Heaps

Standard reminder to set phones to silent/vibrate mode, please!
Priority queues and Heaps

• During today's lesson:
 • Introduce the notion of priority queues
 • Consider some “obvious” implementations (an array of queues; a balanced binary search tree)
 • Introduce the Heap data structure, which provides a more efficient implementation alternative for priority queues
 – Discuss the various operations on a heap and their run time.
Priority queues and Heaps

• Priority queues are rather easy to define:
 • As the name suggests, they're queues where the elements have priorities associated to them.
 • We could look at it by analogy with real-life examples of FIFO structures: a line waiting to be served at a bank (or for the cash registers at a store, etc.)
 – It makes sense that they will serve first those who have been waiting the longest.
Priority queues and Heaps

• Priority queues are rather easy to define:
 • As the name suggests, they're queues where the elements have priorities associated to them.
 • We could look at it by analogy with real-life examples of FIFO structures: a line waiting to be served at a bank (or for the cash registers at a store, etc.)
 - It makes sense that they will serve first those who have been waiting the longest.
 • Except if, for example, a senior or a disabled person arrives in the line — either by policy or by simple courtesy, the common practice is: even if they arrived after, they are served first.
Priority queues and Heaps

• In this example, we're all following the scheme of “first-arrive-first-served” — but seniors have higher priority than non-seniors.

 • So, as long as there are seniors in line, they will be served first, no matter how long we've been waiting, and regardless of whether a senior person arrived just two seconds ago.

• Disabled persons presumably have higher priority than seniors — same principle.
Priority queues and Heaps

• We could visualize this as a set of queues:
 • Disabled persons have a designated line; seniors have a designated, separate, line; and the rest have a separate line.
Priority queues and Heaps

• We could visualize this as a set of queues:
 • Disabled persons have a designated line; seniors have a designated, separate, line; and the rest have a separate line.
 • The serve protocol is: check first the line for disabled persons — if there is someone, serve the first one in line there. If no-one in line, then check the line for seniors; and so on, until checking the line with lowest priority.
Priority queues and Heaps

• This automatically suggests an obvious implementation strategy:
 • Use an array of queues.
 • Assign a non-negative integer number to represent the priority: 0 represents the highest priority; the larger the number, the lower the priority.
 • Use the priority as the subscript for the array (to get to the corresponding queue)
Priority queues and Heaps

- Two disadvantages:
 - Limited — it is feasible (in a reasonable way) if we have a fixed number of priorities (good enough for many applications, but not good enough — mostly because we can do better than that)
Priority queues and Heaps

• Two disadvantages:
 • Limited — it is feasible (in a reasonable way) if we have a fixed number of priorities (good enough for many applications, but not good enough — mostly because we can do better than that)
 • Not efficient
 – Can you see why?
Priority queues and Heaps

• Two disadvantages:
 • Limited — it is feasible (in a reasonable way) if we have a fixed number of priorities (good enough for many applications, but not good enough — mostly because we can do better than that)
 • Not efficient
 − Can you see why?
 • If we have m priorities, then we have an array of m queues, and looking for the “next-in-line” takes $\Theta(m)$
Priority queues and Heaps

- We could turn this into a sorting scheme by thinking of the queue as a sorted list, where we sort by two criteria:
 - First, by priority
 - Then, for equal priorities, sort by arrival order

- This is a lexicographical order ... right? (why?)
Priority queues and Heaps

- If we keep a counter k and increase it every time we insert an element, then the pair (p,k), where p is the priority, provides the appropriate order:

$$(p_1, k_1) < (p_2, k_2) \iff \begin{cases} p_1 < p_2 \quad \text{or} \\ p_1 = p_2 \quad \text{and} \quad k_1 < k_2 \end{cases}$$
Priority queues and Heaps

• With this, we could simply use a balanced binary search tree (e.g., an AVL tree) using that pair as the value being inserted.

• An AVL tree maintains the elements in order with insertions and removals taking logarithmic time.

• However, the implementation is more complicated than it could be, as we'll see next, when looking into Heaps.
Priority queues and Heaps

• Heaps are a particular type of binary trees.
• We'll provide a recursive definition:
• A binary tree of height 0 is a heap.
• A non-empty binary tree is a heap if:
 • The root node is less than the values in either of the sub-trees (if present).
 • Both sub-trees are themselves heaps.
Priority queues and Heaps

• An alternative way to phrase that is:
 • A non-empty binary tree is a heap if for every internal (non-leaf) node, every strict descendant is greater than the node.
Priority queues and Heaps

- Important “fine print” in that definition:
 - Sibling elements — or in general elements in the two sub-trees have NO RELATIONSHIP WHATSOEVER!!

We know that $b < a$ and that $c < a$; that says absolutely nothing about b as compared to, or related to, c.
Priority queues and Heaps

- This is an example of a heap:
Priority queues and Heaps

• This is an example of a heap:

• We have to keep this notion completely apart from the notions of binary search trees. For example:
 • The smallest value (7) and the largest value (89) are both in the left sub-tree.
Priority queues and Heaps

- We can obviously find the lowest value in constant time: right? how?
Priority queues and Heaps

• We can obviously find the lowest value in constant time: right? How?
 • Yes, this one is too obvious to bother writing the answer in the slides :-)

Priority queues and Heaps

- Removing the lowest element (which is the operation corresponding to “serve the next in line”) is rather simple, and presumably efficient:
 - Promote the node at the root of the sub-tree which has the least value.
 - Repeat the same for that sub-tree, all the way down until reaching a leaf node.
Priority queues and Heaps

- An example:
Priority queues and Heaps

• An example:
Priority queues and Heaps

- Question: why is it efficient? (why do I say presumably?)
Priority queues and Heaps

- Question: why is it efficient? (why do I say presumably?)
 - As you may have noticed, removal takes $O(h)$, and presumably, h is small (right? why? And again, why presumably?)
Priority queues and Heaps

- Inserting an element can also be presumably efficient:
 - Create a leaf node with the inserted value, and then adjust.
Priority queues and Heaps

- Let's look at an example — inserting 17 in the heap below:
Priority queues and Heaps

• 17 < 32, so we need to swap them:
Priority queues and Heaps

• It is also < 31, so we swap these as well:
Priority queues and Heaps

- < 19, so we swap, and we're done, since 17 > 12:
Priority queues and Heaps

• Notice that when swapping down a node, we don't need to check anything further for that node — for example, 19 was already less than anything in that sub-tree, so it can not need any further swaps:
Priority queues and Heaps

• BTW, this process is called *percolation* — the heavier (higher) elements “percolate” down:
Priority queues and Heaps

• However
Priority queues and Heaps

• However we want to do insertions in a way that maintains a balanced tree!
Priority queues and Heaps

- However we want to do insertions in a way that maintains a balanced tree!
 - One rather neat way to do this is ensuring that we always have a *complete* binary tree!
 - (and BTW, when we say a complete binary tree, this carries a piece of good news with it ... right?)
Priority queues and Heaps

• However we want to do insertions in a way that maintains a balanced tree!
 • One rather neat way to do this is ensuring that we always have a *complete* binary tree!
 – (and BTW, when we say a complete binary tree, this carries a piece of good news with it ... right?)
 • So, we insert a leaf node, and adjust (you recall that with complete trees, you can only insert at the position following a “breadth-first” traversal — or rather, *as if* we were doing a breadth-first traversal)
Priority queues and Heaps

- BTW, the fact that we can get away with ensuring a complete binary tree is one of the advantages over a balanced binary search tree such as an AVL — maintaining a complete binary tree ensures balance with much lower overhead than that of a general balanced BST such as AVL trees.
Priority queues and Heaps

- Example: let's try inserting 25 into the following heap:
Priority queues and Heaps

• Example: let's try inserting 25 into the following heap:
Priority queues and Heaps

- Since $25 < 36$, we have to swap those. Now, $25 < 33$, so we need to swap those at the second iteration — then we're done, since $25 > 17$
Priority queues and Heaps

• And the resulting tree is a complete tree.
Priority queues and Heaps

- So, as long as we maintain a complete binary tree, we know its height $h = \Theta(\log n)$, and thus the two important operations (enqueue and dequeue) have a worst-case run time $\Theta(\log n)$
Priority queues and Heaps

• So, as long as we maintain a complete binary tree, we know its height $h = \Theta(\log n)$, and thus the two important operations (enqueue and dequeue) have a worst-case run time $\Theta(\log n)$

• Well... except that it gets better!!
Priority queues and Heaps

• When we insert an element at the bottom (as a leaf node), do we need to do h swaps?
Priority queues and Heaps

• When we insert an element at the bottom (as a leaf node), do we need to do h swaps?

• We certainly need to in the worst-case.... But what about the average case?
Priority queues and Heaps

- When we insert an element at the bottom (as a leaf node), do we need to do h swaps?
 - We certainly need to in the worst-case.... But what about the average case?
 - Would it stop half way on average?
Priority queues and Heaps

- When we insert an element at the bottom (as a leaf node), do we need to do \(h \) swaps?
 - We certainly need to in the worst-case.... But what about the average case?
 - Would it stop half way on average?
 - That wouldn't be such great news — it would still be \(\Theta(\log n) \) ... That is, it would be good, but not that good.
Priority queues and Heaps

- Given the exponential nature of the number of leaf nodes (there are as many leaf nodes as internal nodes in a perfect tree — so, at depth $d+1$, there are twice as many nodes at as depth d)
Priority queues and Heaps

- Given the exponential nature of the number of leaf nodes (there are as many leaf nodes as internal nodes in a perfect tree — so, at depth $d+1$, there are twice as many nodes at as depth d)

- So, when a node is swapped to one level up, how does it compare against the rest of the elements at higher depth?
Priority queues and Heaps

- Given the exponential nature of the number of leaf nodes (there are as many leaf nodes as internal nodes in a perfect tree — so, at depth \(d+1\), there are twice as many nodes at as depth \(d\))

- So, when a node is swapped to one level up, how does it compare against the rest of the elements at higher depth?
 - By definition, there is absolutely no relationship between the data in different branches But
Priority queues and Heaps

• Because of the constraint that sub-trees below one given node have all values greater than the node, we have that, on average, assuming random data, evenly distributed, then the behaviour is that nodes at depth d are less than nodes at depth $d+1$.
Priority queues and Heaps

• Because of the constraint that sub-trees below one given node have all values greater than the node, we have that, *on average*, assuming random data, evenly distributed, then the behaviour is that nodes at depth d are less than nodes at depth $d+1$.

• Thus, each time a node goes up one level, it is, *on average*, past half of the remaining elements!

• So, after the first swap, on half of the cases it won't require any additional swaps; thus, average number of swaps is 1!!
Priority queues and Heaps

• The actual math goes more or less as follows:
 • After k swaps ($0 \leq k \leq h$), we are at lower depth than $2^{(h-k)}$ elements, and we're interested in the probability of being above the parent node; this probability is given by the fraction $2^{(h-k)} / n$.
Priority queues and Heaps

• The actual math goes more or less as follows:
 • After k swaps ($0 \leq k \leq h$), we are at lower depth than $2^{(h-k)}$ elements, and we're interested in the probability of being above the parent node; this probability is given by the fraction $2^{(h-k)} / n$.
 • We get the average case by computing the weighted average of the number of swaps (the weights being those probabilities):

Priority queues and Heaps

- The actual math goes more or less as follows:
 - After k swaps ($0 \leq k \leq h$), we are at lower depth than $2^{(h-k)}$ elements, and we're interested in the probability of being above the parent node; this probability is given by the fraction $2^{(h-k)} / n$.
 - We get the average case by computing the weighted average of the number of swaps (the weights being those probabilities):

$$Avg. \, swaps = \sum_{k=0}^{h} k \cdot \frac{2^{(h-k)}}{n} = \frac{2^{h+1} - h - 2}{n} = \Theta(1)$$
Priority queues and Heaps

- So, this is great news — we have the following run times:
 - Insertion: \(\Theta(\log n) \) worst-case
 \(\Theta(1) \) average-case
 - Removal: \(\Theta(\log n) \) worst-case and average-case

- This is definitely much better than with balanced binary search trees.
Priority queues and Heaps

- Food for thought: why did this happen? Why, if we have a binary search tree structure in both cases, and we're in a sense putting data in order, why did we get something so radically faster with binary heaps?
Priority queues and Heaps

- I'm actually leaving that one for you guys to think about it
Priority queues and Heaps

- There's one additional detail, though:
 - When removing (the root element), how do we guarantee that the resulting tree will be a complete binary tree? (in the tree below, we won't end up promoting 88 — which is the only way in which we would end up with a complete binary tree)
Priority queues and Heaps

• There's one additional detail, though:
 • We'd end up promoting 39 and leaving a hole there (in this case, we could move 88 to that position; but in general, we have no guarantee that we'll be able to ... right? why?).
Priority queues and Heaps

- There's one additional detail, though:
 - We'd end up promoting 39 and leaving a hole there (in this case, we could move 88 to that position; but in general, we have no guarantee that we'll be able to ... right? why?). So, any ideas?
Priority queues and Heaps

- There are actually two possibilities:
 - Either move the 88 to the hole left by the removal and then adjust (as if we were doing an insertion; percolate it to its corresponding position).
 - Or move the last entry to the root, and then percolate it down.
Priority queues and Heaps

• Coming back to the issue of ordering by comparing pairs \((p, k)\) — priority + order of arrival...

• Let's look at how this works with heaps:
Priority queues and Heaps

- Coming back to the issue of ordering by comparing pairs \((p, k)\) — priority + order of arrival...

- Let's look at how this works with heaps:
 - Let's say that we insert 7 elements, all with priority 2. The counter \(k\) would then go from 0 to 6, and the heap could end up as follows:
Priority queues and Heaps

• Now removing them:
 • We extract the element at the root:
Priority queues and Heaps

- Now removing them:
 - We extract the element at the root: (2,6) goes up, then swapped with (2,1), then (2,3)
Priority queues and Heaps

- Now removing them:
 - Then we'd go in the following order:
Priority queues and Heaps

• Now removing them:
 • Then we'd go in the following order:

```
2,6
└── 2,4
    └── 2,3
       └── 2,5
```
Priority queues and Heaps

- Now removing them:
 - Then we'd go in the following order:
Priority queues and Heaps

- Now removing them:
 - Then we'd go in the following order:
Priority queues and Heaps

- One last detail — perhaps the “cool upon cool” of all features of this binary heap:
 - Because we always maintain a complete binary tree, then we can implement it as an array!!
 - Leaving the first cell (subscript 0) unused:
 - Children of node k (i.e., value at subscript k of the array) are $2k$ and $2k+1$.
 - Parent of node k is $k \div 2$ (as in, integer division)
Priority queues and Heaps

- One last detail — perhaps the “cool upon cool” of all features of this binary heap:
 - Because we always maintain a complete binary tree, then we can implement it as an array!!
 - Leaving the first cell (subscript 0) unused:
 - Children of node \(k \) (i.e., value at subscript \(k \) of the array) are \(2k \) and \(2k+1 \).
 - Parent of node \(k \) is \(k \div 2 \) (as in, integer division)
 - So here's a radical idea: maybe we will be able to use heaps to sort data! Since it is all in an array, sounds like we're in business...
Priority queues and Heaps

• Sorting using heaps ...
 • One important obstacle we'd have to clear:
 - Can it be done in-place? Sounds like we'd need to take the data from the array (arbitrary and unconstrained data) and insert the elements into a heap.
Priority queues and Heaps

• Sorting using heaps ...
 • One important obstacle we'd have to clear:
 – Can it be done in-place? Sounds like we'd need to take the data from the array (arbitrary and unconstrained data) and insert the elements into a heap.

• That will actually be our next topic — the truly remarkable *Heap Sort* algorithm!
Summary

• During today's lesson:
 • Introduced the notion of priority queues
 • Discussed some “obvious”, but not too efficient, implementations (array of queues; balanced binary search tree)
 • Looked into the Heap data structure, for a more efficient implementation alternative for priority queues.
 – Discussed operations on a heap and their run time.