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Priority queues and Heaps

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Priority queues and Heaps

● During today's lesson:
● Introduce the notion of priority queues
● Consider some “obvious” implementations (an array 

of queues;  a balanced binary search tree)
● Introduce the Heap data structure, which provides a 

more efficient implementation alternative for priority 
queues
– Discuss the various operations on a heap and their run 

time.



  

Priority queues and Heaps

● Priority queues are rather easy to define:
● As the name suggests, they're queues where the 

elements have priorities associated to them.
● We could look at it by analogy with real-life 

examples of FIFO structures:  a line waiting to be 
served at a bank (or for the cash registers at a 
store, etc.)
– It makes sense that they will serve first those who have 

been waiting the longest.



  

Priority queues and Heaps

● Priority queues are rather easy to define:
● As the name suggests, they're queues where the 

elements have priorities associated to them.
● We could look at it by analogy with real-life 

examples of FIFO structures:  a line waiting to be 
served at a bank (or for the cash registers at a 
store, etc.)
– It makes sense that they will serve first those who have 

been waiting the longest.
● Except if, for example, a senior or a disabled person arrives in 

the line — either by policy or by simple courtesy, the common 
practice is:  even if they arrived after, they are served first.



  

Priority queues and Heaps

● In this example, we're all following the scheme 
of “first-arrive-first-served” — but seniors have 
higher priority than non-seniors.
● So, as long as there are seniors in line, they will be 

served first, no matter how long we've been waiting, 
and regardless of whether a senior person arrived 
just two seconds ago.

● Disabled persons presumably have higher 
priority than seniors — same principle.



  

Priority queues and Heaps

● We could visualize this as a set of queues:
● Disabled persons have a designated line;  seniors 

have a designated, separate, line;  and the rest 
have a separate line.



  

Priority queues and Heaps

● We could visualize this as a set of queues:
● Disabled persons have a designated line;  seniors 

have a designated, separate, line;  and the rest 
have a separate line.

● The serve protocol is:  check first the line for 
disabled persons — if there is someone, serve the 
first one in line there.  If no-one in line, then check 
the line for seniors;  and so on, until checking the 
line with lowest priority.



  

Priority queues and Heaps

● This automatically suggests an obvious 
implementation strategy:
● Use an array of queues.
● Assign a non-negative integer number to represent 

the priority:  0 represents the highest priority;  the 
larger the number, the lower the priority.

● Use the priority as the subscript for the array  (to 
get to the corresponding queue)



  

Priority queues and Heaps

● Two disadvantages:
● Limited — it is feasible (in a reasonable way) if we 

have a fixed number of priorities  (good enough for 
many applications, but not good enough — mostly 
because we can do better than that)
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many applications, but not good enough — mostly 
because we can do better than that)

● Not efficient
– Can you see why?



  

Priority queues and Heaps

● Two disadvantages:
● Limited — it is feasible (in a reasonable way) if we 

have a fixed number of priorities  (good enough for 
many applications, but not good enough — mostly 
because we can do better than that)

● Not efficient
– Can you see why?

● If we have m priorities, then we have an array of m queues, and 
looking for the “next-in-line” takes Θ(m)



  

Priority queues and Heaps

● We could turn this into a sorting scheme by 
thinking of the queue as a sorted list, where we 
sort by two criteria:
● First, by priority
● Then, for equal priorities, sort by arrival order

● This is a lexicographical order ... right?  (why?)



  

Priority queues and Heaps

● If we keep a counter k and increase it every 
time we insert an element, then the pair (p,k), 
where p is the priority, provides the appropriate 
order:

( p1, k 1) < ( p2, k 2) ⇔ p1 < p2 or
p1 = p2 and k 1 < k 2



  

Priority queues and Heaps

● With this, we could simply use a balanced 
binary search tree (e.g., an AVL tree) using that 
pair as the value being inserted.

● An AVL tree maintains the elements in order 
with insertions and removals taking logarithmic 
time.

● However, the implementation is more 
complicated than it could be, as we'll see next, 
when looking into Heaps.



  

Priority queues and Heaps

● Heaps are a particular type of binary trees.
● We'll provide a recursive definition:
● A binary tree of height 0 is a heap.
● A non-empty binary tree is a heap if:

● The root node is less than the values in either of the 
sub-trees (if present).

● Both sub-trees are themselves heaps.



  

Priority queues and Heaps

● An alternative way to phrase that is:
● A non-empty binary tree is a heap if for every 

internal (non-leaf) node, every strict descendant is 
greater than the node.



  

Priority queues and Heaps

● Important “fine print” in that definition:
● Sibling elements — or in general elements in the 

two sub trees have NO RELATIONSHIP ‑
WHATSOEVER!!

We know that b < a   and that  c < a;  that says 
absolutely nothing about b as compared to, or 
related to, c.

b

a

c



  

Priority queues and Heaps

● This is an example of a heap:



  

Priority queues and Heaps

● This is an example of a heap:
● We have to keep this notion

completely apart from the 
notions of binary search
trees.  For example:
● The smallest value (7) and 

the largest value (89) are 
both in the left sub-tree.



  

Priority queues and Heaps

● We can obviously find the lowest value in 
constant time:  right?  how?



  

Priority queues and Heaps

● We can obviously find the lowest value in 
constant time:  right?  How?
● Yes, this one is too obvious to bother writing the 

answer in the slides  :-)



  

Priority queues and Heaps

● Removing the lowest element  (which is the 
operation corresponding to “serve the next in 
line”) is rather simple, and presumably efficient:
● Promote the node at the root of the sub-tree which 

has the least value.
● Repeat the same for that sub-tree, all the way down 

until reaching a leaf node.



  

Priority queues and Heaps

● An example:
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● An example:



  

Priority queues and Heaps

● Question:  why is it efficient?  (why do I say 
presumably?)



  

Priority queues and Heaps

● Question:  why is it efficient?  (why do I say 
presumably?)
● As you may have noticed, removal takes O(h), and 

presumably, h is small (right? why? And again, why 
presumably?)



  

Priority queues and Heaps

● Inserting an element can also be presumably 
efficient:
● Create a leaf node with the inserted value, and then 

adjust.



  

Priority queues and Heaps

● Let's look at an example — inserting 17 in the 
heap below:



  

Priority queues and Heaps

● 17 < 32, so we need to swap them:



  

Priority queues and Heaps

● It is also < 31, so we swap these as well:



  

Priority queues and Heaps

●  < 19, so we swap, and we're done, since 
17 > 12:



  

Priority queues and Heaps

● Notice that when swapping down a node, we don't 
need to check anything further for that node — for 
example, 19 was already less than anything in that 
sub-tree, so it can not need any further swaps:



  

Priority queues and Heaps

● BTW, this process is called percolation — the 
heavier (higher) elements “percolate” down:



  

Priority queues and Heaps

● However .... 



  

Priority queues and Heaps

● However .... we want to do insertions in a way 
that maintains a balanced tree!



  

Priority queues and Heaps

● However .... we want to do insertions in a way 
that maintains a balanced tree!
● One rather neat way to do this is ensuring that we 

always have a complete binary tree!
– (and BTW, when we say a complete binary tree, this 

carries a piece of good news with it ...  right?)



  

Priority queues and Heaps

● However .... we want to do insertions in a way 
that maintains a balanced tree!
● One rather neat way to do this is ensuring that we 

always have a complete binary tree!
– (and BTW, when we say a complete binary tree, this 

carries a piece of good news with it ...  right?)
● So, we insert a leaf node, and adjust (you recall that 

with complete trees, you can only insert at the 
position following a “breadth-first” traversal — or 
rather, as if we were doing a breadth-first traversal)



  

Priority queues and Heaps

● BTW, the fact that we can get away with 
ensuring a complete binary tree is one of the  
advantages over a balanced binary search tree 
such as an AVL — maintaining a complete 
binary tree ensures balance with much lower 
overhead than that of a general balanced BST 
such as AVL trees.



  

Priority queues and Heaps

● Example:  let's try inserting 25 into the following 
heap:



  

Priority queues and Heaps

● Example:  let's try inserting 25 into the following 
heap:



  

Priority queues and Heaps

● Since 25 < 36, we have to swap those.  Now, 
25 < 33, so we need to swap those at the 
second iteration — then we're done, since 
25 > 17



  

Priority queues and Heaps

● And the resulting tree is a complete tree.



  

Priority queues and Heaps

● So, as long as we maintain a complete binary 
tree, we know its height h = Θ(log n), and thus 
the two important operations (enqueue and 
dequeue) have a worst-case run time Θ(log n)



  

Priority queues and Heaps

● So, as long as we maintain a complete binary 
tree, we know its height h = Θ(log n), and thus 
the two important operations (enqueue and 
dequeue) have a worst-case run time Θ(log n)
● Well... except that it gets better!!



  

Priority queues and Heaps

● When we insert an element at the bottom (as a 
leaf node), do we need to do h swaps?



  

Priority queues and Heaps

● When we insert an element at the bottom (as a 
leaf node), do we need to do h swaps?
● We certainly need to in the worst-case....  But what 

about the average case?



  

Priority queues and Heaps

● When we insert an element at the bottom (as a 
leaf node), do we need to do h swaps?
● We certainly need to in the worst-case....  But what 

about the average case?
● Would it stop half way on average?



  

Priority queues and Heaps

● When we insert an element at the bottom (as a 
leaf node), do we need to do h swaps?
● We certainly need to in the worst-case....  But what 

about the average case?
● Would it stop half way on average?

– That wouldn't be such great news — it would still be 
Θ(log n) ...  That is, it would be good, but not that good.



  

Priority queues and Heaps

● Given the exponential nature of the number of 
leaf nodes  (there are as many leaf nodes as 
internal nodes in a perfect tree — so, at depth 
d+1, there are twice as many nodes at as 
depth d)



  

Priority queues and Heaps

● Given the exponential nature of the number of 
leaf nodes  (there are as many leaf nodes as 
internal nodes in a perfect tree — so, at depth 
d+1, there are twice as many nodes at as 
depth d)

● So, when a node is swapped to one level up, 
how does it compare against the rest of the 
elements at higher depth?



  

Priority queues and Heaps

● Given the exponential nature of the number of 
leaf nodes  (there are as many leaf nodes as 
internal nodes in a perfect tree — so, at depth 
d+1, there are twice as many nodes at as 
depth d)

● So, when a node is swapped to one level up, 
how does it compare against the rest of the 
elements at higher depth?
● By definition, there is absolutely no relationship 

between the data in different branches ....  But ....



  

Priority queues and Heaps

● Because of the constraint that sub-trees below 
one given node have all values greater than the 
node, we have that, on average, assuming 
random data, evenly distributed, then the 
behaviour is that nodes at depth d are less than 
nodes at depth d+1.



  

Priority queues and Heaps

● Because of the constraint that sub-trees below 
one given node have all values greater than the 
node, we have that, on average, assuming 
random data, evenly distributed, then the 
behaviour is that nodes at depth d are less than 
nodes at depth d+1.
● Thus, each time a node goes up one level, it is, on 

average, past half of the remaining elements!
● So, after the first swap, on half of the cases it won't 

require any additional swaps;  thus, average 
number of swaps is 1 !!



  

Priority queues and Heaps

● The actual math goes more or less as follows:
● After k swaps (0 ≤ k ≤ h), we are at lower depth 

than 2(h−k) elements, and we're interested in the 
probability of being above the parent node;  this 
probability is given by the fraction 2(h−k) / n.



  

Priority queues and Heaps

● The actual math goes more or less as follows:
● After k swaps (0 ≤ k ≤ h), we are at lower depth 

than 2(h−k) elements, and we're interested in the 
probability of being above the parent node;  this 
probability is given by the fraction 2(h−k) / n.

● We get the average case by computing the 
weighted average of the number of swaps (the 
weights being those probabilities):



  

Priority queues and Heaps

● The actual math goes more or less as follows:
● After k swaps (0 ≤ k ≤ h), we are at lower depth 

than 2(h−k) elements, and we're interested in the 
probability of being above the parent node;  this 
probability is given by the fraction 2(h−k) / n.

● We get the average case by computing the 
weighted average of the number of swaps (the 
weights being those probabilities):

Avg. swaps = ∑
k=0

h

k⋅
2(h−k )

n
=

2h+1−h−2
n

= Θ(1)



  

Priority queues and Heaps

● So, this is great news — we have the following 
run times:
● Insertion:  Θ(log n) worst-case

                 Θ(1) average-case
● Removal:  Θ(log n) worst-case and average-case

● This is definitely much better than with 
balanced binary search trees.



  

Priority queues and Heaps

● Food for thought:  why did this happen?  Why, if 
we have a binary search tree structure in both 
cases, and we're in a sense putting data in 
order, why did we get something so radically 
faster with binary heaps?



  

Priority queues and Heaps

● I'm actually leaving that one for you guys to 
think about it ....



  

Priority queues and Heaps

● There's one additional detail, though:
● When removing (the root element), how do we 

guarantee that the resulting tree will be a complete 
binary tree?  (in the tree below, we won't end up 
promoting 88 — which is the only way in which we 
would end up with a complete binary tree)



  

Priority queues and Heaps

● There's one additional detail, though:
● We'd end up promoting 39 and leaving a hole there  

(in this case, we could move 88 to that position;  but 
in general, we have no guarantee that we'll be able 
to ... right? why?). 



  

Priority queues and Heaps

● There's one additional detail, though:
● We'd end up promoting 39 and leaving a hole there  

(in this case, we could move 88 to that position;  but 
in general, we have no guarantee that we'll be able 
to ... right? why?).  So, any ideas ? 



  

Priority queues and Heaps

● There are actually two possibilities:
● Either move the 88 to the hole left by the removal 

and then adjust (as if we were doing an insertion; 
percolate it to its corresponding position).

● Or move the last entry to the root, and then 
percolate it down.



  

Priority queues and Heaps

● Coming back to the issue of ordering by 
comparing pairs (p, k) — priority + order of 
arrival...

● Let's look at how this works with heaps:



  

Priority queues and Heaps

● Coming back to the issue of ordering by 
comparing pairs (p, k) — priority + order of 
arrival...

● Let's look at how this works with heaps:
● Let's say that we insert 7 elements, all with priority 

2.  The counter k would then go from 0 to 6, and the 
heap could end up as follows:



  

Priority queues and Heaps

● Now removing them:
● We extract the element at the root:



  

Priority queues and Heaps

● Now removing them:
● We extract the element at the root:  (2,6) goes up, 

then swapped with (2,1), then (2,3)



  

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:



  

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:



  

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:



  

Priority queues and Heaps

● Now removing them:
● Then we'd go in the following order:



  

Priority queues and Heaps

● One last detail — perhaps the “cool upon cool” 
of all features of this binary heap:
● Because we always maintain a complete binary 

tree, then we can implement it as an array !!
● Leaving the first cell (subscript 0) unused:

– Children of node k (i.e., value at subscript k of the array) 
are 2k and 2k+1.

– Parent of node k is k ÷ 2  (as in, integer division)



  

Priority queues and Heaps

● One last detail — perhaps the “cool upon cool” 
of all features of this binary heap:
● Because we always maintain a complete binary 

tree, then we can implement it as an array !!
● Leaving the first cell (subscript 0) unused:

– Children of node k (i.e., value at subscript k of the array) 
are 2k and 2k+1.

– Parent of node k is k ÷ 2  (as in, integer division)
● So here's a radical idea:  maybe we will be able to 

use heaps to sort data!  Since it is all in an array, 
sounds like we're in business...



  

Priority queues and Heaps

● Sorting using heaps ...
● One important obstacle we'd have to clear:

– Can it be done in-place?  Sounds like we'd need to take 
the data from the array (arbitrary and unconstrained data) 
and insert the elements into a heap.



  

Priority queues and Heaps

● Sorting using heaps ...
● One important obstacle we'd have to clear:

– Can it be done in-place?  Sounds like we'd need to take 
the data from the array (arbitrary and unconstrained data) 
and insert the elements into a heap.

● That will actually be our next topic — the truly 
remarkable Heap Sort algorithm!



  

Summary

● During today's lesson:
● Introduced the notion of priority queues
● Discussed some “obvious”, but not too efficient, 

implementations (array of queues;  balanced binary 
search tree)

● Looked into the Heap data structure, for a more 
efficient implementation alternative for priority 
queues.
– Discussed operations on a heap and their run time.
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