

Priority queues and Heaps

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

http://xkcd.com/835/

Priority queues and Heaps

Standard reminder to set phones to
silent/vibrate mode, please!

Priority queues and Heaps

● During today's lesson:
● Introduce the notion of priority queues
● Consider some “obvious” implementations (an array

of queues; a balanced binary search tree)
● Introduce the Heap data structure, which provides a

more efficient implementation alternative for priority
queues
– Discuss the various operations on a heap and their run

time.

Priority queues and Heaps

● Priority queues are rather easy to define:
● As the name suggests, they're queues where the

elements have priorities associated to them.
● We could look at it by analogy with real-life

examples of FIFO structures: a line waiting to be
served at a bank (or for the cash registers at a
store, etc.)
– It makes sense that they will serve first those who have

been waiting the longest.
● Except if, for example, a senior or a disabled person arrives in

the line — either by policy or by simple courtesy, the common
practice is: even if they arrived after, they are served first.

Priority queues and Heaps

● In this example, we're all following the scheme
of “first-arrive-first-served” — but seniors have
higher priority than non-seniors.
● So, as long as there are seniors in line, they will be

served first, no matter how long we've been waiting,
and regardless of whether a senior person arrived
just two seconds ago.

● Disabled persons presumably have higher
priority than seniors — same principle.

Priority queues and Heaps

● We could visualize this as a set of queues:
● Disabled persons have a designated line; seniors

have a designated, separate, line; and the rest
have a separate line.

● The serve protocol is: check first the line for
disabled persons — if there is someone, serve the
first one in line there. If no-one in line, then check
the line for seniors; and so on, until checking the
line with lowest priority.

Priority queues and Heaps

● This automatically suggests an obvious
implementation strategy:
● Use an array of queues.
● Assign a non-negative integer number to represent

the priority: 0 represents the highest priority; the
larger the number, the lower the priority.

● Use the priority as the subscript for the array (to
get to the corresponding queue)

Priority queues and Heaps

● Disadvantage: Not efficient
● Can you see why?

Priority queues and Heaps

● We could turn this into a sorting scheme by
thinking of the queue as a sorted list, where we
sort by two criteria:
● First, by priority
● Then, for equal priorities, sort by arrival order

● This is a lexicographical order ... right? (why?)

Priority queues and Heaps

● With this, we could simply use a balanced
binary search tree (e.g., an AVL tree) using that
pair as the value being inserted.

● An AVL tree maintains the elements in order
with insertions and removals taking logarithmic
time.

● However, the implementation is more
complicated than it could be, as we'll see next,
when looking into Heaps.

Priority queues and Heaps

● Heaps are a particular type of binary trees.
● We'll provide a recursive definition:
● A binary tree of height 0 is a heap.
● A non-empty binary tree is a heap if:

● The root node is less than the values in either of the
sub-trees (if present).

● Both sub-trees are themselves heaps.

Priority queues and Heaps

● Important “fine print” in that definition:
● Sibling elements — or elements in the two

sub trees have NO RELATIONSHIP ‑
WHATSOEVER!!

We know that b < a and that c < a; that says
absolutely nothing about b as compared to, or
related to, c.

b

a

c

Priority queues and Heaps

● This is an example of a heap:

Priority queues and Heaps

● This is an example of a heap:
● We have to keep this notion

completely apart from the
notions of binary search
trees. For example:
● The smallest value (7) and

the largest value (89) are
both in the left sub-tree.

Priority queues and Heaps

● We can obviously find the lowest value in
constant time: right? how?

Priority queues and Heaps

● Removing the lowest element (which is the
operation corresponding to “serve the next in
line”) is rather simple, and presumably efficient:
● Promote the node at the root of the sub-tree which

has the least value.
● Repeat the same for that sub-tree, all the way down

until reaching a leaf node.

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● An example:

Priority queues and Heaps

● Question: why is it efficient? (why do I say
presumably?)

Priority queues and Heaps

● Inserting an element has to be done with care:
we want to maintain balance!
● One rather neat way to do this is ensuring that we

always have a complete binary tree!
– (and BTW, when we say a complete binary tree, this

carries a piece of good news with it ... right?)
● So, we insert a leaf node, and adjust (you recall that

with complete trees, you can only insert at the
position following a “breadth-first” traversal — or
rather, as if we were doing a breadth-first traversal)

Priority queues and Heaps

● BTW, the fact that we can get away with
ensuring a complete binary tree is the main
advantage over a balanced binary search tree
such as an AVL — maintaining a complete
binary tree ensures balance with much lower
overhead than that of a general balanced BST
such as AVL trees.

Priority queues and Heaps

● Example: let's try inserting 25 into the following
heap:

Priority queues and Heaps

● Example: let's try inserting 25 into the following
heap:

Priority queues and Heaps

● Since 25 < 36, we have to swap those. Now,
25 < 33, so we need to swap those at the
second iteration — then we're done, since
25 > 17

Priority queues and Heaps

● Notice that we don't need to worry about 33
when we swap it down — it was already lower
than anything in that sub-tree.

Priority queues and Heaps

● We'll look at array implementation in class.
● We'll also discuss the run times more in detail

in class.

Summary

● During today's lesson:
● Introduced the notion of priority queues
● Discussed some “obvious”, but not too efficient,

implementations (array of queues; balanced binary
search tree)

● Looked into the Heap data structure, for a more
efficient implementation alternative for priority
queues.
– Discussed operations on a heap and their run time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

