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Priority queues and Heaps

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Priority queues and Heaps

● During today's lesson:
● Introduce the notion of priority queues
● Consider some “obvious” implementations (an array 

of queues;  a balanced binary search tree)
● Introduce the Heap data structure, which provides a 

more efficient implementation alternative for priority 
queues
– Discuss the various operations on a heap and their run 

time.



  

Priority queues and Heaps

● Priority queues are rather easy to define:
● As the name suggests, they're queues where the 

elements have priorities associated to them.
● We could look at it by analogy with real-life 

examples of FIFO structures:  a line waiting to be 
served at a bank (or for the cash registers at a 
store, etc.)
– It makes sense that they will serve first those who have 

been waiting the longest.
● Except if, for example, a senior or a disabled person arrives in 

the line — either by policy or by simple courtesy, the common 
practice is:  even if they arrived after, they are served first.



  

Priority queues and Heaps

● In this example, we're all following the scheme 
of “first-arrive-first-served” — but seniors have 
higher priority than non-seniors.
● So, as long as there are seniors in line, they will be 

served first, no matter how long we've been waiting, 
and regardless of whether a senior person arrived 
just two seconds ago.

● Disabled persons presumably have higher 
priority than seniors — same principle.



  

Priority queues and Heaps

● We could visualize this as a set of queues:
● Disabled persons have a designated line;  seniors 

have a designated, separate, line;  and the rest 
have a separate line.

● The serve protocol is:  check first the line for 
disabled persons — if there is someone, serve the 
first one in line there.  If no-one in line, then check 
the line for seniors;  and so on, until checking the 
line with lowest priority.



  

Priority queues and Heaps

● This automatically suggests an obvious 
implementation strategy:
● Use an array of queues.
● Assign a non-negative integer number to represent 

the priority:  0 represents the highest priority;  the 
larger the number, the lower the priority.

● Use the priority as the subscript for the array  (to 
get to the corresponding queue)



  

Priority queues and Heaps

● Disadvantage:  Not efficient
● Can you see why?



  

Priority queues and Heaps

● We could turn this into a sorting scheme by 
thinking of the queue as a sorted list, where we 
sort by two criteria:
● First, by priority
● Then, for equal priorities, sort by arrival order

● This is a lexicographical order ... right?  (why?)



  

Priority queues and Heaps

● With this, we could simply use a balanced 
binary search tree (e.g., an AVL tree) using that 
pair as the value being inserted.

● An AVL tree maintains the elements in order 
with insertions and removals taking logarithmic 
time.

● However, the implementation is more 
complicated than it could be, as we'll see next, 
when looking into Heaps.



  

Priority queues and Heaps

● Heaps are a particular type of binary trees.
● We'll provide a recursive definition:
● A binary tree of height 0 is a heap.
● A non-empty binary tree is a heap if:

● The root node is less than the values in either of the 
sub-trees (if present).

● Both sub-trees are themselves heaps.



  

Priority queues and Heaps

● Important “fine print” in that definition:
● Sibling elements — or elements in the two 

sub trees have NO RELATIONSHIP ‑
WHATSOEVER!!

We know that b < a   and that  c < a;  that says 
absolutely nothing about b as compared to, or 
related to, c.

b

a

c



  

Priority queues and Heaps

● This is an example of a heap:



  

Priority queues and Heaps

● This is an example of a heap:
● We have to keep this notion

completely apart from the 
notions of binary search
trees.  For example:
● The smallest value (7) and 

the largest value (89) are 
both in the left sub-tree.



  

Priority queues and Heaps

● We can obviously find the lowest value in 
constant time:  right?  how?



  

Priority queues and Heaps

● Removing the lowest element  (which is the 
operation corresponding to “serve the next in 
line”) is rather simple, and presumably efficient:
● Promote the node at the root of the sub-tree which 

has the least value.
● Repeat the same for that sub-tree, all the way down 

until reaching a leaf node.



  

Priority queues and Heaps

● An example:



  

Priority queues and Heaps

● An example:



  

Priority queues and Heaps

● An example:



  

Priority queues and Heaps

● An example:



  

Priority queues and Heaps

● An example:



  

Priority queues and Heaps

● Question:  why is it efficient?  (why do I say 
presumably?)



  

Priority queues and Heaps

● Inserting an element has to be done with care:  
we want to maintain balance!
● One rather neat way to do this is ensuring that we 

always have a complete binary tree!
– (and BTW, when we say a complete binary tree, this 

carries a piece of good news with it ...  right?)
● So, we insert a leaf node, and adjust (you recall that 

with complete trees, you can only insert at the 
position following a “breadth-first” traversal — or 
rather, as if we were doing a breadth-first traversal)



  

Priority queues and Heaps

● BTW, the fact that we can get away with 
ensuring a complete binary tree is the main 
advantage over a balanced binary search tree 
such as an AVL — maintaining a complete 
binary tree ensures balance with much lower 
overhead than that of a general balanced BST 
such as AVL trees.



  

Priority queues and Heaps

● Example:  let's try inserting 25 into the following 
heap:



  

Priority queues and Heaps

● Example:  let's try inserting 25 into the following 
heap:



  

Priority queues and Heaps

● Since 25 < 36, we have to swap those.  Now, 
25 < 33, so we need to swap those at the 
second iteration — then we're done, since 
25 > 17



  

Priority queues and Heaps

● Notice that we don't need to worry about 33 
when we swap it down — it was already lower 
than anything in that sub-tree.



  

Priority queues and Heaps

● We'll look at array implementation in class.
● We'll also discuss the run times more in detail 

in class.



  

Summary

● During today's lesson:
● Introduced the notion of priority queues
● Discussed some “obvious”, but not too efficient, 

implementations (array of queues;  balanced binary 
search tree)

● Looked into the Heap data structure, for a more 
efficient implementation alternative for priority 
queues.
– Discussed operations on a heap and their run time.
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