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Sorting

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Sorting

● During today's class:
● Introduce Sorting and related concepts
● Discuss some aspects of the run time of sorting 

algorithms
● Look into some of the basic (inefficient) algorithms
● Introduce merge sort

– Discuss its run time



  

Sorting

● Basic definition:
● Process of taking a list of objects with a linear 

ordering

and output a permutation of the list

such that

(a1,a2, ⋯ , an−1 , an)

(ak 1
, ak 2

, ⋯ , ak n−1
, ak n)

ak 1
⩽ ak 2

⩽ ⋯ ⩽ ak n−1
⩽ ak n



  

Sorting

● More often than not, we're interested in sorting 
a list of “records” in order by some field (e.g., 
we have a list of students with the various 
grades — assignments, midterm, labs, etc.) 
and we want to sort by student ID, or we want 
to sort by final grade, etc.



  

Sorting

● However, in our discussions of the various sort 
algorithms, we will assume that:
● We're sorting values (objects that can be directly 

compared).
– The more general case can be seen as an 

implementation detail
 

● We're using arrays for both input and output of the 
sequences of values.



  

Sorting

● We will be most interested in algorithms that 
can be performed in-place.
● That is, requiring Θ(1) additional memory  (a fixed 

number of local variables)
● Some times, the definition is stated as requiring 

o(n) additional memory  (i.e., strictly less than linear 
amount of memory);  this allows recursive methods 
that divide the range in two parts and proceed 
recursively  (Θ(log n) recursive calls, which means 
a “hidden” memory usage of Θ(log n)



  

Sorting

● The intuition of in-place refers to doing all the 
operations in the same area where the input 
values are, without requiring allocation of a 
second array of the same size.



  

Sorting

● Some of the typical operations used by sorting 
algorithms are:

• Insertion

• Swapping

• Selection

• Merging



  

● We've already discussed that (under some 
more or less standard assumptions), no sort 
algorithm can have a run time better than 
n log n
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● We've already discussed that (under some 
more or less standard assumptions), no sort 
algorithm can have a run time better than 
n log n

● However, there are algorithms that run in linear 
time  (huh???)
● No, I'm not pulling your leg — in fact, if you read 

carefully the first paragraph you should notice that 
the second paragraph does not necessarily 
contradict the first one.

Sorting



  

● The ones we'll study are either: 
● Θ(n log n)

– Merge sort, heap sort, quick sort
 

● Θ(n²)
– Insertion sort, selection sort, bubble sort

 

● ω(n²)
– Bogosort  (though this one has a remarkable variation, 

the Quantum bogosort,  that executes in linear 
time — unconditionally, and without any assumptions or 
constraints on the data!!)

Sorting



  

● We'll go in reverse — starting by the slower 
ones (we'll discuss bogosort and its variation, 
the quantum bogosort, in class — i.e., not in 
these “pre-lecture” slides)

Sorting



  

● The simpler algorithms (both in terms of their 
description and in terms of their actual 
operation) tend to be the slower ones:
● Selection sort is one of the simplest sorting 

algorithms.  It's really simple:

Sorting



  

● Selection sort:
● At the first iteration:

– Find the lowest value (in particular, its position in the 
array);  then, swap it with the first element of the array.

● Second iteration:
– Find the lowest value starting at the second element;  

then, swap it with the second element of the array.
● And so on, until the second to last element.

Sorting



  

● Selection sort:
● Can you determine its run time?
● Also:  is it an in-place algorithm?

Sorting



  

● Insertion sort is another very simple algorithm:
● Traversing the array from first to last element, for 

element k, search for the right position for that value 
in the range 0 to k-1 of the array, and insert it at that 
position.
– By “insert”, we mean:  shift the remaining elements one 

position forward, to open up the one location where to put 
the element.

● As a slight optimization, we usually check first 
whether the value is less than its previous value (if 
it's not, then we don't need to do anything at this 
iteration).

Sorting



  

● Insertion sort:
● Run time?
● Is it in-place?

 

● A non-trivial question:  Is it faster than selection 
sort?  (we'd like to compare average-case run times 
and worst-case run times)

Sorting



  

● Bubble-sort is perhaps the one with the 
simplest implementation among all sorting 
algorithms — at least in its unoptimized form:
● Do n times the following:

– Traverse the array, checking each element with its next 
element (neighbouring element) — if they're in the wrong 
order, swap them  (noticing that the loop continues, and 
now the “next” position will be the element that we just 
swapped)

Sorting



  

● Merge sort:
● We've already seen a partial description of this one 

(assignment 2).
● We saw that its run time is n log n  (well, assuming 

that you believed me that the merge function runs in 
linear time — hopefully you did believe me! :-) )
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● Merge sort:
● We've already seen a partial description of this one 

(assignment 2).
● We saw that its run time is n log n  (well, assuming 

that you believed me that the merge function runs in 
linear time — hopefully you did believe me! :-) )

● This one falls in the divide-and-conquer category of 
algorithms:  divide the problem into simpler parts  
(to the point where the problem turns into a much 
easier — often trivial — problem, so we “conquer” 
the original problem)
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● Merge sort:
● So simple — really, soooooo simple:

– Split the array into two halves.
– Sort (using the same merge sort) the first half
– Then, sort the second half
– Then, merge them  (since they are ordered sequence, it 

should be easy to merge them in linear time into a single 
ordered sequence... right?)

● You guys tell me how   (we'll go over it in class)

Sorting



  

● Merge sort:
● In this case, the “simpler” base case is really a 

trivial algorithm — when the array size reaches one, 
the sort procedure is really the null procedure  (an 
array of one element is already a sorted array, so 
we do nothing).

Sorting



  

● Merge sort:
● Like I mentioned, we already saw that the run time 

is Θ(n log
 
n)

● What about space?  Can it be executed in-place?  
(you have to first answer the “how do we merge?” 
question before addressing this one)
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Summary

● During today's lesson:
● We discussed sorting and related concepts
● Looked into the run time of sorting algorithms
● Introduced insertion sort, selection sort, and bubble 

sort.
● Introduced and analyzed merge sort.
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