

Sorting

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Photo courtesy of ellenmc / Flickr:
http://www.flickr.com/photos/ellenmc/4508741746/

Sorting

Standard reminder to set phones to
silent/vibrate mode, please!

Sorting

● During today's class:
● Introduce Sorting and related concepts
● Discuss some aspects of the run time of sorting

algorithms
● Look into some of the basic (inefficient) algorithms
● Introduce merge sort

– Discuss its run time

Sorting

● Basic definition:
● Process of taking a list of objects with a linear

ordering

and output a permutation of the list

such that

(a1,a2, ⋯ , an−1 , an)

(ak 1
, ak 2

, ⋯ , ak n−1
, ak n)

ak 1
⩽ ak 2

⩽ ⋯ ⩽ ak n−1
⩽ ak n

Sorting

● More often than not, we're interested in sorting
a list of “records” in order by some field (e.g.,
we have a list of students with the various
grades — assignments, midterm, labs, etc.)
and we want to sort by student ID, or we want
to sort by final grade, etc.

Sorting

● However, in our discussions of the various sort
algorithms, we will assume that:
● We're sorting values (objects that can be directly

compared).
– The more general case can be seen as an

implementation detail

● We're using arrays for both input and output of the
sequences of values.

Sorting

● We will be most interested in algorithms that
can be performed in-place.
● That is, requiring Θ(1) additional memory (a fixed

number of local variables)
● Some times, the definition is stated as requiring

o(n) additional memory (i.e., strictly less than linear
amount of memory); this allows recursive methods
that divide the range in two parts and proceed
recursively (Θ(log n) recursive calls, which means
a “hidden” memory usage of Θ(log n)

Sorting

● The intuition of in-place refers to doing all the
operations in the same area where the input
values are, without requiring allocation of a
second array of the same size.

Sorting

● Some of the typical operations used by sorting
algorithms are:

• Insertion

• Swapping

• Selection

• Merging

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

Sorting

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

● However, there are algorithms that run in linear
time

Sorting

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

● However, there are algorithms that run in linear
time (huh???)

Sorting

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

● However, there are algorithms that run in linear
time (huh???)
● No, I'm not pulling your leg — in fact, if you read

carefully the first paragraph you should notice that
the second paragraph does not necessarily
contradict the first one.

Sorting

● The ones we'll study are either:
● Θ(n log n)

– Merge sort, heap sort, quick sort

● Θ(n²)
– Insertion sort, selection sort, bubble sort

● ω(n²)
– Bogosort (though this one has a remarkable variation,

the Quantum bogosort, that executes in linear
time — unconditionally, and without any assumptions or
constraints on the data!!)

Sorting

● We'll go in reverse — starting by the slower
ones (we'll discuss bogosort and its variation,
the quantum bogosort, in class — i.e., not in
these “pre-lecture” slides)

Sorting

● The simpler algorithms (both in terms of their
description and in terms of their actual
operation) tend to be the slower ones:
● Selection sort is one of the simplest sorting

algorithms. It's really simple:

Sorting

● Selection sort:
● At the first iteration:

– Find the lowest value (in particular, its position in the
array); then, swap it with the first element of the array.

● Second iteration:
– Find the lowest value starting at the second element;

then, swap it with the second element of the array.
● And so on, until the second to last element.

Sorting

● Selection sort:
● Can you determine its run time?
● Also: is it an in-place algorithm?

Sorting

● Insertion sort is another very simple algorithm:
● Traversing the array from first to last element, for

element k, search for the right position for that value
in the range 0 to k-1 of the array, and insert it at that
position.
– By “insert”, we mean: shift the remaining elements one

position forward, to open up the one location where to put
the element.

● As a slight optimization, we usually check first
whether the value is less than its previous value (if
it's not, then we don't need to do anything at this
iteration).

Sorting

● Insertion sort:
● Run time?
● Is it in-place?

● A non-trivial question: Is it faster than selection
sort? (we'd like to compare average-case run times
and worst-case run times)

Sorting

● Bubble-sort is perhaps the one with the
simplest implementation among all sorting
algorithms — at least in its unoptimized form:
● Do n times the following:

– Traverse the array, checking each element with its next
element (neighbouring element) — if they're in the wrong
order, swap them (noticing that the loop continues, and
now the “next” position will be the element that we just
swapped)

Sorting

● Merge sort:
● We've already seen a partial description of this one

(assignment 2).
● We saw that its run time is n log n (well, assuming

that you believed me that the merge function runs in
linear time — hopefully you did believe me! :-))

Sorting

● Merge sort:
● We've already seen a partial description of this one

(assignment 2).
● We saw that its run time is n log n (well, assuming

that you believed me that the merge function runs in
linear time — hopefully you did believe me! :-))

Sorting

● Merge sort:
● We've already seen a partial description of this one

(assignment 2).
● We saw that its run time is n log n (well, assuming

that you believed me that the merge function runs in
linear time — hopefully you did believe me! :-))

● This one falls in the divide-and-conquer category of
algorithms: divide the problem into simpler parts
(to the point where the problem turns into a much
easier — often trivial — problem, so we “conquer”
the original problem)

Sorting

● Merge sort:
● So simple — really, soooooo simple:

– Split the array into two halves.
– Sort (using the same merge sort) the first half
– Then, sort the second half
– Then, merge them (since they are ordered sequence, it

should be easy to merge them in linear time into a single
ordered sequence... right?)

● You guys tell me how (we'll go over it in class)

Sorting

● Merge sort:
● In this case, the “simpler” base case is really a

trivial algorithm — when the array size reaches one,
the sort procedure is really the null procedure (an
array of one element is already a sorted array, so
we do nothing).

Sorting

● Merge sort:
● Like I mentioned, we already saw that the run time

is Θ(n log

n)

● What about space? Can it be executed in-place?
(you have to first answer the “how do we merge?”
question before addressing this one)

Sorting

Summary

● During today's lesson:
● We discussed sorting and related concepts
● Looked into the run time of sorting algorithms
● Introduced insertion sort, selection sort, and bubble

sort.
● Introduced and analyzed merge sort.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

