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Sorting

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Sorting

● During today's class:
● Introduce Sorting and related concepts
● Discuss some aspects of the run time of sorting 

algorithms
● Look into some of the basic (inefficient) algorithms
● Introduce merge sort

– Discuss its run time



  

Sorting

● Basic definition:
● Process of taking a list of objects with a linear 

ordering

and output a permutation of the list

such that

(a1,a2, ⋯ , an−1 , an)

(ak 1
, ak 2

, ⋯ , ak n−1
, ak n)

ak 1
⩽ ak 2

⩽ ⋯ ⩽ ak n−1
⩽ ak n



  

Sorting

● More often than not, we're interested in sorting 
a list of “records” in order by some field (e.g., 
we have a list of students with the various 
grades — assignments, midterm, labs, etc.) 
and we want to sort by student ID, or we want 
to sort by final grade, etc.



  

Sorting

● However, in our discussions of the various sort 
algorithms, we will assume that:
● We're sorting values (objects that can be directly 

compared).
– The more general case can be seen as an 

implementation detail
 

● We're using arrays for both input and output of the 
sequences of values.



  

Sorting

● We will be most interested in algorithms that 
can be performed in-place.
● That is, requiring Θ(1) additional memory  (a fixed 

number of local variables)
● Some times, the definition is stated as requiring 

o(n) additional memory  (i.e., strictly less than linear 
amount of memory);  this allows recursive methods 
that divide the range in two parts and proceed 
recursively  (Θ(log n) recursive calls, which means 
a “hidden” memory usage of Θ(log n)



  

Sorting

● The intuition of in-place refers to doing all the 
operations in the same area where the input 
values are, without requiring allocation of a 
second array of the same size.



  

Sorting

● Some of the typical operations used by sorting 
algorithms are:

• Insertion

• Swapping

• Selection

• Merging



  

● We've already discussed that (under some 
more or less standard assumptions), no sort 
algorithm can have a run time better than 
n log n
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● We've already discussed that (under some 
more or less standard assumptions), no sort 
algorithm can have a run time better than 
n log n

● However, there are algorithms that run in linear 
time  (huh???)
● No, I'm not pulling your leg — in fact, if you read 

carefully the first paragraph you should notice that 
the second paragraph does not necessarily 
contradict the first one.

Sorting



  

● The key detail is that one of the conditions for 
that lower-bound is that it is applicable to 
sorting arbitrary (possibly random) data.
● If the data is subject to some constraints, then we 

can indeed sort in linear time
– And even then, one could get into a philosophical 

discussion making the case that it is not really linear 
time...  But let's leave it at that...

Sorting



  

● Notice that we do have already a very 
straightforward way (at least straightforward to 
describe) to sort n values:
● Insert them in an AVL tree, then do an in-order 

traversal to output the sorted sequence.
– Each insertion takes Θ(log n), and there are n of them

 

● BTW, this was essentially the answer to the bonus 
marks question in the midterm — reduction from 
sort:  if insertion in a BST was faster than log  n, then 
we would have a sort that is faster than n log

 
n.

Sorting



  

● The ones we'll study are either: 
● Θ(n log n)

– Merge sort, heap sort, quick sort
 

● Θ(n²)
– Insertion sort, selection sort, bubble sort

 

● ω(n²)
– Bogosort  (though this one has a remarkable variation, 

the Quantum bogosort,  that executes in linear 
time — unconditionally, and without any assumptions or 
constraints on the data!!)

Sorting



  

● We'll go in reverse — starting by the slower 
ones (Well, the quantum bogosort is really the 
fastest, but ... )

Sorting



  

● Bogosort:
● Randomly reorder the elements.
● Check if they are sorted.
● If not, repeat.

Sorting



  

● Bogosort:
● Randomly reorder the elements.
● Check if they are sorted.
● If not, repeat.

● Run-time:
● Best-case:  Θ(n)  (reordering can be done in linear 

time, and checking is obviously linear time).
● Average-case:  Θ(n!)  (there are n! Permutations!)
● Worst-case:  ...  (you guys tell me?)
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● Bogosort:
● Randomly reorder the elements.
● Check if they are sorted.
● If not, repeat.

● Run-time:
● Best-case:  Θ(n)  (reordering can be done in linear 

time, and checking is obviously linear time).
● Average-case:  Θ(n!)  (there are n! Permutations!)
● Worst-case:  Unbounded  (right?)

Sorting



  

● The interesting variation, the quantum bogosort 
does the following:
● Use a quantum-level source of random binary 

events to randomly reorder the sequence.
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● The interesting variation, the quantum bogosort 
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● Use a quantum-level source of random binary 
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● The interesting variation, the quantum bogosort 
does the following:
● Use a quantum-level source of random binary 

events to randomly reorder the sequence.
● If the resulting sequence is not sorted, destroy the 

universe.
● Anyone wants to take a stab at seeing why it works, 

and why it is so fast?  (linear time)
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● From the Many Worlds Interpretation (MWI) of 
Quantum Physics, an infinite number of 
universes (realities) exist simultaneously.
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● From the Many Worlds Interpretation (MWI) of 
Quantum Physics, an infinite number of 
universes (realities) exist simultaneously.

● Every outcome of a quantum-level random 
event does occur — it just splits the reality into 
all corresponding realities.
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● From the Many Worlds Interpretation (MWI) of 
Quantum Physics, an infinite number of 
universes (realities) exist simultaneously.

● Every outcome of a quantum-level random 
event does occur — it just splits the reality into 
all corresponding realities.

● So, all 2n possible realities do take place (in 
parallel), but the 2n − 1 universes where the 
sort failed were destroyed, and in the universe 
that remains, the bogosort was completed with 
a single permutation — thus, it ran in Θ(n)
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● True story ... !!

Sorting



  

● Back to our “single reality” paradigm, where 
we're interested in the reasonable sorting 
algorithms...

Sorting



  

● The simpler algorithms (both in terms of their 
description and in terms of their actual 
operation) tend to be the slower ones:
● Selection sort is one of the simplest sorting 

algorithms.  It's really simple:

Sorting



  

● Selection sort:
● At the first iteration:

– Find the lowest value (in particular, its position in the 
array);  then, swap it with the first element of the array.

● Second iteration:
– Find the lowest value starting at the second element;  

then, swap it with the second element of the array.
● And so on, until the second to last element.

Sorting



  

● Selection sort:
● Run time?
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● Selection sort:
● Run time?
● It's clearly quadratic:  The first pass, we search 

through exactly n−1 elements (no difference 
between average-case and worst-case), then swap 
(constant time).  Second time, n−2 elements, then 
n−3, etc.

● We get (yet again!) the arithmetic sum — Θ(n²)
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● Selection sort:
● Run time?
● It's clearly quadratic:  The first pass, we search 

through exactly n−1 elements (no difference 
between average-case and worst-case), then swap 
(constant time).  Second time, n−2 elements, then 
n−3, etc.

● We get (yet again!) the arithmetic sum — Θ(n²)

● It is clearly an in-place algorithm  (we swap 
elements in the array)

Sorting



  

● Insertion sort is another very simple algorithm:
● Traversing the array from first to last element, for 

element k, search for the right position for that value 
in the range 0 to k-1 of the array, and insert it at that 
position.
– By “insert”, we mean:  shift the remaining elements one 

position forward, to open up the one location where to put 
the element.

● As a slight optimization, we usually check first 
whether the value is less than its previous value (if 
it's not, then we don't need to do anything at this 
iteration).

Sorting



  

● Insertion sort:
● Run time?
● Is it in-place?

 

● A non-trivial question:  Is it faster than selection 
sort?  (we'd like to compare average-case run times 
and worst-case run times)

Sorting



  

● Insertion sort:
● Run time is clearly quadratic  (analysis is similar to 

that of selection sort — emphasis on similar;  not 
exactly the same)
– At first glance, this may sound horribly inefficient, since 

for a single element we need to move Θ(n) elements to 
shift the values and open space for the current element.

– However, the average-case benefits from the fact that for 
many elements, it is already greater than all the elements 
before, so we don't need to do anything  (for selection 
sort, every single pass requires Θ(n) to search for the 
lowest!)

Sorting



  

● Insertion sort:
● Bottom line:  remarkably enough (perhaps 

surprisingly enough), on average, insertion sort 
outperforms selection sort
– Yes, by a constant speedup factor, which plays no role in 

asymptotic analysis, but as we know, it does play a role in 
a practical, real-life implementation where we just want or 
need the fastest we can get!

Sorting



  

● Bubble-sort is perhaps the one with the 
simplest implementation among all sorting 
algorithms — at least in its unoptimized form:
● Do n times the following:

– Traverse the array, checking each element with its next 
element (neighbouring element) — if they're in the wrong 
order, swap them  (noticing that the loop continues, and 
now the “next” position will be the element that we just 
swapped)

Sorting



  

● Merge sort:
● We've already seen a partial description of this one 

(assignment 2).
● We saw that its run time is n log n  (well, assuming 

that you believed me that the merge function runs in 
linear time — hopefully you did believe me! :-) )

Sorting



  

● Merge sort:
● We've already seen a partial description of this one 

(assignment 2).
● We saw that its run time is n log n  (well, assuming 

that you believed me that the merge function runs in 
linear time — hopefully you did believe me! :-) )

● This one falls in the divide-and-conquer category of 
algorithms:  divide the problem into simpler parts  
(to the point where the problem turns into a much 
easier — often trivial — problem, so we “conquer” 
the original problem)

Sorting



  

● Merge sort:
● So simple — really, soooooo simple:

– Split the array into two halves.
– Sort (using the same merge sort) the first half
– Then, sort the second half
– Then, merge them  (since they are ordered sequence, it 

should be easy to merge them in linear time into a single 
ordered sequence... right?)

● You guys tell me how?

Sorting



  

● Merging two sorted sequences into a single 
sorted sequence (in linear time):
● Example:

    Sequence A:  11, 23, 40, 57, 78, 93
    Sequence B:    5,   9, 35, 36, 39, 63
 

● Can you guys go through the resulting merged 
sequence efficiently?

Sorting



  

● Merging two sorted sequences into a single 
sorted sequence (in linear time):
● Because the sequences are in order, we don't need 

to check every element of one sequence for each 
element processed from the other — we just keep 
track of where we are on each sequence, and 
advance on the corresponding one.

Sorting
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● Merging two sorted sequences into a single 
sorted sequence (in linear time):

    Sequence A:  11, 23, 40, 57, 78, 93
    Sequence B:    5,   9, 35, 36, 39, 63
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● Merging two sorted sequences into a single 
sorted sequence (in linear time):

    Sequence A:  11, 23, 40, 57, 78, 93
    Sequence B:    5,   9, 35, 36, 39, 63
 

Done!
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● Merge sort:
● In this case, the “simpler” base case is really a 

trivial algorithm — when the array size reaches one, 
the sort procedure is really the null procedure  (an 
array of one element is already a sorted array, so 
we do nothing).

Sorting



  

● Merge sort:
● Like I mentioned, we already saw that the run time 

is Θ(n log
 
n)

● What about space?  Can it be executed in-place?  
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● Merge sort:
● Like I mentioned, we already saw that the run time 

is Θ(n log
 
n)

● What about space?  Can it be executed in-place?
– Really not!  The merge operation does require the extra 

space.  
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● Now — how's this for a plot twist:
● How do you guys think the performance of merge 

sort compares to the performance of, say, insertion 
sort, for arrays of size 10 or 20?
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● Now — how's this for a plot twist:
● How do you guys think the performance of merge 

sort compares to the performance of, say, insertion 
sort, for arrays of size 10 or 20?

● We have merge sort that takes C1 · 10 · log(10), but 
because of its complexity, the constant C1 is rather 
large!

● Insertion sort takes C2 · 10² = 100 C2  with a C2 
considerably lower than C1
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● Now — how's this for a plot twist:
● Clearly, for low values of n, the “slow” algorithms 

actually outperform merge sort (the fast one).
● Shouldn't be a surprise ...  Merge sort is 

asymptotically faster, which is what we care about 
anyway .... right?

Sorting



  

● Now — how's this for a plot twist:
● Clearly, for low values of n, the “slow” algorithms 

actually outperform merge sort (the fast one).
● Shouldn't be a surprise ...  Merge sort is 

asymptotically faster, which is what we care about 
anyway .... right?
 

● Ok, but that's not the plot twist ...  Can 
someone see where this is going?
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actually outperform merge sort (the fast one).
● Shouldn't be a surprise ...  Merge sort is 

asymptotically faster, which is what we care about 
anyway .... right?
 

● Ok, but that's not the plot twist ...  Can 
someone see where this is going?
● Hint: we want merge sort to be as fast as possible!
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● Now — how's this for a plot twist:
● Clearly, for low values of n, the “slow” algorithms 

actually outperform merge sort (the fast one).
● Shouldn't be a surprise ...  Merge sort is 

asymptotically faster, which is what we care about 
anyway .... right?
 

● Ok, but that's not the plot twist ...  Can 
someone see where this is going?
● Hint: we want merge sort to be as fast as possible!
● Hint 2:  merge sort divides the size and sorts the 

two halves (recursively, of course — how else!!)
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● Now — how's this for a plot twist:
● That's right !!!  When the recursive process reaches 

a size for which insertion sort is faster, then we 
don't sort the sub-arrays with merge sort
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● Now — how's this for a plot twist:
● That's right !!!  When the recursive process reaches 

a size for which insertion sort is faster, then we 
don't sort the sub-arrays with merge sort  (why 
would we, if we have another sort algorithm that is 
faster!!!!)

● This threshold is typically obtained experimentally;  
often in the order of a few tens)
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● Now — how's this for a plot twist:
● That's right !!!  When the recursive process reaches 

a size for which insertion sort is faster, then we 
don't sort the sub-arrays with merge sort  (why 
would we, if we have another sort algorithm that is 
faster!!!!)

● This threshold is typically obtained experimentally;  
often in the order of a few tens)

● Final detail:
● Does this change the asymptotic run time of merge 

sort?  Is it no longer Θ(n log n)?  What is it, if not?

Sorting



  

Summary

● During today's lesson:
● We discussed sorting and related concepts
● Looked into the run time of sorting algorithms
● Introduced insertion sort, selection sort, and bubble 

sort.
● Introduced and analyzed merge sort.
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