

Sorting

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Photo courtesy of ellenmc / Flickr:
http://www.flickr.com/photos/ellenmc/4508741746/

Sorting

Standard reminder to set phones to
silent/vibrate mode, please!

Sorting

● During today's class:
● Introduce Sorting and related concepts
● Discuss some aspects of the run time of sorting

algorithms
● Look into some of the basic (inefficient) algorithms
● Introduce merge sort

– Discuss its run time

Sorting

● Basic definition:
● Process of taking a list of objects with a linear

ordering

and output a permutation of the list

such that

(a1,a2, ⋯ , an−1 , an)

(ak 1
, ak 2

, ⋯ , ak n−1
, ak n)

ak 1
⩽ ak 2

⩽ ⋯ ⩽ ak n−1
⩽ ak n

Sorting

● More often than not, we're interested in sorting
a list of “records” in order by some field (e.g.,
we have a list of students with the various
grades — assignments, midterm, labs, etc.)
and we want to sort by student ID, or we want
to sort by final grade, etc.

Sorting

● However, in our discussions of the various sort
algorithms, we will assume that:
● We're sorting values (objects that can be directly

compared).
– The more general case can be seen as an

implementation detail

● We're using arrays for both input and output of the
sequences of values.

Sorting

● We will be most interested in algorithms that
can be performed in-place.
● That is, requiring Θ(1) additional memory (a fixed

number of local variables)
● Some times, the definition is stated as requiring

o(n) additional memory (i.e., strictly less than linear
amount of memory); this allows recursive methods
that divide the range in two parts and proceed
recursively (Θ(log n) recursive calls, which means
a “hidden” memory usage of Θ(log n)

Sorting

● The intuition of in-place refers to doing all the
operations in the same area where the input
values are, without requiring allocation of a
second array of the same size.

Sorting

● Some of the typical operations used by sorting
algorithms are:

• Insertion

• Swapping

• Selection

• Merging

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

Sorting

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

● However, there are algorithms that run in linear
time

Sorting

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

● However, there are algorithms that run in linear
time (huh???)

Sorting

● We've already discussed that (under some
more or less standard assumptions), no sort
algorithm can have a run time better than
n log n

● However, there are algorithms that run in linear
time (huh???)
● No, I'm not pulling your leg — in fact, if you read

carefully the first paragraph you should notice that
the second paragraph does not necessarily
contradict the first one.

Sorting

● The key detail is that one of the conditions for
that lower-bound is that it is applicable to
sorting arbitrary (possibly random) data.
● If the data is subject to some constraints, then we

can indeed sort in linear time
– And even then, one could get into a philosophical

discussion making the case that it is not really linear
time... But let's leave it at that...

Sorting

● Notice that we do have already a very
straightforward way (at least straightforward to
describe) to sort n values:
● Insert them in an AVL tree, then do an in-order

traversal to output the sorted sequence.
– Each insertion takes Θ(log n), and there are n of them

● BTW, this was essentially the answer to the bonus
marks question in the midterm — reduction from
sort: if insertion in a BST was faster than log n, then
we would have a sort that is faster than n log

n.

Sorting

● The ones we'll study are either:
● Θ(n log n)

– Merge sort, heap sort, quick sort

● Θ(n²)
– Insertion sort, selection sort, bubble sort

● ω(n²)
– Bogosort (though this one has a remarkable variation,

the Quantum bogosort, that executes in linear
time — unconditionally, and without any assumptions or
constraints on the data!!)

Sorting

● We'll go in reverse — starting by the slower
ones (Well, the quantum bogosort is really the
fastest, but ...)

Sorting

● Bogosort:
● Randomly reorder the elements.
● Check if they are sorted.
● If not, repeat.

Sorting

● Bogosort:
● Randomly reorder the elements.
● Check if they are sorted.
● If not, repeat.

● Run-time:
● Best-case: Θ(n) (reordering can be done in linear

time, and checking is obviously linear time).
● Average-case: Θ(n!) (there are n! Permutations!)
● Worst-case: ... (you guys tell me?)

Sorting

● Bogosort:
● Randomly reorder the elements.
● Check if they are sorted.
● If not, repeat.

● Run-time:
● Best-case: Θ(n) (reordering can be done in linear

time, and checking is obviously linear time).
● Average-case: Θ(n!) (there are n! Permutations!)
● Worst-case: Unbounded (right?)

Sorting

● The interesting variation, the quantum bogosort
does the following:
● Use a quantum-level source of random binary

events to randomly reorder the sequence.

Sorting

● The interesting variation, the quantum bogosort
does the following:
● Use a quantum-level source of random binary

events to randomly reorder the sequence.
● If the resulting sequence is not sorted, destroy the

universe.

Sorting

● The interesting variation, the quantum bogosort
does the following:
● Use a quantum-level source of random binary

events to randomly reorder the sequence.
● If the resulting sequence is not sorted, destroy the

universe.
● Anyone wants to take a stab at seeing why it works,

and why it is so fast? (linear time)

Sorting

● From the Many Worlds Interpretation (MWI) of
Quantum Physics, an infinite number of
universes (realities) exist simultaneously.

Sorting

● From the Many Worlds Interpretation (MWI) of
Quantum Physics, an infinite number of
universes (realities) exist simultaneously.

● Every outcome of a quantum-level random
event does occur — it just splits the reality into
all corresponding realities.

Sorting

● From the Many Worlds Interpretation (MWI) of
Quantum Physics, an infinite number of
universes (realities) exist simultaneously.

● Every outcome of a quantum-level random
event does occur — it just splits the reality into
all corresponding realities.

● So, all 2n possible realities do take place (in
parallel), but the 2n − 1 universes where the
sort failed were destroyed, and in the universe
that remains, the bogosort was completed with
a single permutation — thus, it ran in Θ(n)

Sorting

● True story ... !!

Sorting

● Back to our “single reality” paradigm, where
we're interested in the reasonable sorting
algorithms...

Sorting

● The simpler algorithms (both in terms of their
description and in terms of their actual
operation) tend to be the slower ones:
● Selection sort is one of the simplest sorting

algorithms. It's really simple:

Sorting

● Selection sort:
● At the first iteration:

– Find the lowest value (in particular, its position in the
array); then, swap it with the first element of the array.

● Second iteration:
– Find the lowest value starting at the second element;

then, swap it with the second element of the array.
● And so on, until the second to last element.

Sorting

● Selection sort:
● Run time?

Sorting

● Selection sort:
● Run time?
● It's clearly quadratic: The first pass, we search

through exactly n−1 elements (no difference
between average-case and worst-case), then swap
(constant time). Second time, n−2 elements, then
n−3, etc.

● We get (yet again!) the arithmetic sum — Θ(n²)

Sorting

● Selection sort:
● Run time?
● It's clearly quadratic: The first pass, we search

through exactly n−1 elements (no difference
between average-case and worst-case), then swap
(constant time). Second time, n−2 elements, then
n−3, etc.

● We get (yet again!) the arithmetic sum — Θ(n²)

● It is clearly an in-place algorithm (we swap
elements in the array)

Sorting

● Insertion sort is another very simple algorithm:
● Traversing the array from first to last element, for

element k, search for the right position for that value
in the range 0 to k-1 of the array, and insert it at that
position.
– By “insert”, we mean: shift the remaining elements one

position forward, to open up the one location where to put
the element.

● As a slight optimization, we usually check first
whether the value is less than its previous value (if
it's not, then we don't need to do anything at this
iteration).

Sorting

● Insertion sort:
● Run time?
● Is it in-place?

● A non-trivial question: Is it faster than selection
sort? (we'd like to compare average-case run times
and worst-case run times)

Sorting

● Insertion sort:
● Run time is clearly quadratic (analysis is similar to

that of selection sort — emphasis on similar; not
exactly the same)
– At first glance, this may sound horribly inefficient, since

for a single element we need to move Θ(n) elements to
shift the values and open space for the current element.

– However, the average-case benefits from the fact that for
many elements, it is already greater than all the elements
before, so we don't need to do anything (for selection
sort, every single pass requires Θ(n) to search for the
lowest!)

Sorting

● Insertion sort:
● Bottom line: remarkably enough (perhaps

surprisingly enough), on average, insertion sort
outperforms selection sort
– Yes, by a constant speedup factor, which plays no role in

asymptotic analysis, but as we know, it does play a role in
a practical, real-life implementation where we just want or
need the fastest we can get!

Sorting

● Bubble-sort is perhaps the one with the
simplest implementation among all sorting
algorithms — at least in its unoptimized form:
● Do n times the following:

– Traverse the array, checking each element with its next
element (neighbouring element) — if they're in the wrong
order, swap them (noticing that the loop continues, and
now the “next” position will be the element that we just
swapped)

Sorting

● Merge sort:
● We've already seen a partial description of this one

(assignment 2).
● We saw that its run time is n log n (well, assuming

that you believed me that the merge function runs in
linear time — hopefully you did believe me! :-))

Sorting

● Merge sort:
● We've already seen a partial description of this one

(assignment 2).
● We saw that its run time is n log n (well, assuming

that you believed me that the merge function runs in
linear time — hopefully you did believe me! :-))

● This one falls in the divide-and-conquer category of
algorithms: divide the problem into simpler parts
(to the point where the problem turns into a much
easier — often trivial — problem, so we “conquer”
the original problem)

Sorting

● Merge sort:
● So simple — really, soooooo simple:

– Split the array into two halves.
– Sort (using the same merge sort) the first half
– Then, sort the second half
– Then, merge them (since they are ordered sequence, it

should be easy to merge them in linear time into a single
ordered sequence... right?)

● You guys tell me how?

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):
● Example:

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

● Can you guys go through the resulting merged
sequence efficiently?

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):
● Because the sequences are in order, we don't need

to check every element of one sequence for each
element processed from the other — we just keep
track of where we are on each sequence, and
advance on the corresponding one.

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Sorting

● Merging two sorted sequences into a single
sorted sequence (in linear time):

 Sequence A: 11, 23, 40, 57, 78, 93
 Sequence B: 5, 9, 35, 36, 39, 63

Done!

Sorting

● Merge sort:
● In this case, the “simpler” base case is really a

trivial algorithm — when the array size reaches one,
the sort procedure is really the null procedure (an
array of one element is already a sorted array, so
we do nothing).

Sorting

● Merge sort:
● Like I mentioned, we already saw that the run time

is Θ(n log

n)

● What about space? Can it be executed in-place?

Sorting

● Merge sort:
● Like I mentioned, we already saw that the run time

is Θ(n log

n)

● What about space? Can it be executed in-place?
– Really not! The merge operation does require the extra

space.

Sorting

● Now — how's this for a plot twist:
● How do you guys think the performance of merge

sort compares to the performance of, say, insertion
sort, for arrays of size 10 or 20?

Sorting

● Now — how's this for a plot twist:
● How do you guys think the performance of merge

sort compares to the performance of, say, insertion
sort, for arrays of size 10 or 20?

● We have merge sort that takes C1 · 10 · log(10), but
because of its complexity, the constant C1 is rather
large!

● Insertion sort takes C2 · 10² = 100 C2 with a C2
considerably lower than C1

Sorting

● Now — how's this for a plot twist:
● Clearly, for low values of n, the “slow” algorithms

actually outperform merge sort (the fast one).
● Shouldn't be a surprise ... Merge sort is

asymptotically faster, which is what we care about
anyway right?

Sorting

● Now — how's this for a plot twist:
● Clearly, for low values of n, the “slow” algorithms

actually outperform merge sort (the fast one).
● Shouldn't be a surprise ... Merge sort is

asymptotically faster, which is what we care about
anyway right?

● Ok, but that's not the plot twist ... Can
someone see where this is going?

Sorting

● Now — how's this for a plot twist:
● Clearly, for low values of n, the “slow” algorithms

actually outperform merge sort (the fast one).
● Shouldn't be a surprise ... Merge sort is

asymptotically faster, which is what we care about
anyway right?

● Ok, but that's not the plot twist ... Can
someone see where this is going?
● Hint: we want merge sort to be as fast as possible!

Sorting

● Now — how's this for a plot twist:
● Clearly, for low values of n, the “slow” algorithms

actually outperform merge sort (the fast one).
● Shouldn't be a surprise ... Merge sort is

asymptotically faster, which is what we care about
anyway right?

● Ok, but that's not the plot twist ... Can
someone see where this is going?
● Hint: we want merge sort to be as fast as possible!
● Hint 2: merge sort divides the size and sorts the

two halves (recursively, of course — how else!!)

Sorting

● Now — how's this for a plot twist:
● That's right !!! When the recursive process reaches

a size for which insertion sort is faster, then we
don't sort the sub-arrays with merge sort

Sorting

● Now — how's this for a plot twist:
● That's right !!! When the recursive process reaches

a size for which insertion sort is faster, then we
don't sort the sub-arrays with merge sort (why
would we, if we have another sort algorithm that is
faster!!!!)

● This threshold is typically obtained experimentally;
often in the order of a few tens)

Sorting

● Now — how's this for a plot twist:
● That's right !!! When the recursive process reaches

a size for which insertion sort is faster, then we
don't sort the sub-arrays with merge sort (why
would we, if we have another sort algorithm that is
faster!!!!)

● This threshold is typically obtained experimentally;
often in the order of a few tens)

● Final detail:
● Does this change the asymptotic run time of merge

sort? Is it no longer Θ(n log n)? What is it, if not?

Sorting

Summary

● During today's lesson:
● We discussed sorting and related concepts
● Looked into the run time of sorting algorithms
● Introduced insertion sort, selection sort, and bubble

sort.
● Introduced and analyzed merge sort.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

