

Heap sort

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

http://xkcd.com/835/

Heap sort

Standard reminder to set phones to
silent/vibrate mode, please!

Heap sort

● Last time, on ECE-250...
● Talked about heaps as a structure suitable to

implement priority queues.
● Discussed the detail that dequeuing can be seen as

extracting the values in order.
● Noticed one obstacle that we'd face if we try to use

such structure for the purpose of sorting.

Heap sort

● Even before that...
● We had seen that log(n!) = Θ(n log n)

– log(n!) = log n + log (n−1) + log (n−2) + ··· + log 3 + log 2

● Also, we had seen that ∑
k=1

n

k 2k = 2(n2n−2n+1)

Heap sort

● During today's lesson:
● Discuss the notion of max-heap (vs. min-heap,

which is what we saw last time)
● Introduce the Heap sort algorithm
● Discuss its run time
● Discuss heapification and its run time

Heap sort

● During today's lesson:
● Discuss the notion of max-heap (vs. min-heap,

which is what we saw last time)
● Introduce the Heap sort algorithm
● Discuss its run time
● Discuss heapification and its run time

(... heapification ... How cool is that !!)

Heap sort

● Starting with a preliminary ...
● Max-heaps vs. min-heaps:

– The constraints in the nodes in a binary tree that define it
to be a heap is based on the parent node being less than
either one of the children.

Heap sort

● Starting with a preliminary ...
● Max-heaps vs. min-heaps:

– The constraints in the nodes in a binary tree that define it
to be a heap is based on the parent node being less than
either one of the children.

– What if we defined it to be that the parent node has to be
greater than either one of the children?

Heap sort

● Starting with a preliminary ...
● Max-heaps vs. min-heaps:

– The constraints in the nodes in a binary tree that define it
to be a heap is based on the parent node being less than
either one of the children.

– What if we defined it to be that the parent node has to be
greater than either one of the children?

● Clearly, the structure, the kinds of tricks that we can do and that
are guaranteed to work given the constraints, would continue to
work (as long as we adapt them to the constraint “backwards”)

Heap sort

● Starting with a preliminary ...
● This is basically the notion of a max-heap — the

relationship between parent and children defines
the type of heap:
– Parent < either one of the children: Min-heap
– Parent > either one of the children: Max-heap

Heap sort

● Starting with a preliminary ...
● Everything that we discussed last time works

exactly the same with either max-heaps or
min heaps (insertions, removals, percolations, ‑
etc.).

Heap sort

● Starting with a preliminary ...
● Everything that we discussed last time works

exactly the same with either max-heaps or
min heaps (insertions, removals, percolations, ‑
etc.).

● Of course, matching all conditions — for example,
when percolating up, we saw that we need to
promote the lower of the two children.

Heap sort

● Starting with a preliminary ...
● Everything that we discussed last time works

exactly the same with either max-heaps or
min heaps (insertions, removals, percolations, ‑
etc.).

● Of course, matching all conditions — for example,
when percolating up, we saw that we need to
promote the lower of the two children.
– With a max-heap, of course, we promote the larger of the

two children
– Same thing when percolating down — we swap with the

larger of the children, instead of with the lower as we saw
last time (for min-heaps)

Heap sort

● Moving on to the heap sort ...

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case

logarithmic time; thus, n insertions would take
Θ(n log n) — more specifically, it would take
Θ(log n!), but that's Θ(n log n) as we recall.

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case

logarithmic time; thus, n insertions would take
Θ(n log n) — more specifically, it would take
Θ(log n!), but that's Θ(n log n) as we recall.

(BTW... why is the run time Θ(log n!) ??)

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case

logarithmic time; thus, n insertions would take
Θ(n log n) — more specifically, it would take
Θ(log n!), but that's Θ(n log n) as we recall.

(BTW... why is the run time Θ(log n!) ??)

If the heap is initially empty, then with each
insertion, the size grows by 1 element; adding the
run times of the insertions we get:

log 1 + log 2 + log 3 + ··· + log (n−1) + log n = log(n!)

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case

logarithmic time; thus, n insertions would take
Θ(n log n) — more specifically, it would take
Θ(log n!), but that's Θ(n log n) as we recall.

● After that, removing each element (always the
lowest value) takes logarithmic time each; so,
removing them all takes another Θ(log n!)
– But that means that we took a sequence of values and

output the same values in sorted sequence ...

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case

logarithmic time; thus, n insertions would take
Θ(n log n) — more specifically, it would take
Θ(log n!), but that's Θ(n log n) as we recall.

● After that, removing each element (always the
lowest value) takes logarithmic time each; so,
removing them all takes another Θ(log n!)
– But that means that we took a sequence of values and

output the same values in sorted sequence ... And it all
happened in Θ(n log n)

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case

logarithmic time; thus, n insertions would take
Θ(n log n) — more specifically, it would take
Θ(log n!), but that's Θ(n log n) as we recall.

● After that, removing each element (always the
lowest value) takes logarithmic time each; so,
removing them all takes another Θ(log n!)
– But that means that we took a sequence of values and

output the same values in sorted sequence ... And it all
happened in Θ(n log n) — how cool is that !!

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using

additional storage (Θ(n)), but we need a heap,
instead of just an array.

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using

additional storage (Θ(n)), but we need a heap,
instead of just an array.
– Ok, except that we saw that heaps can be implemented

using array storage (maintaining a complete binary tree)

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using

additional storage (Θ(n)), but we need a heap,
instead of just an array.
– Ok, except that we saw that heaps can be implemented

using array storage (maintaining a complete binary tree)
● Another key aspect is that we saw how most

operations with heaps are done by just swapping
nodes — this suggests that doing things in-place
should be feasible!

Heap sort

● Since we're starting with an array of arbitrary
values, and we want to work in-place (that is,
we'll want that array to be the heap itself), it
makes sense to solve the problem of turning a
binary tree with arbitrary, unconstrained data,
into a valid max-heap.
● It will become clear why we want to use a

max heap.‑

● Let's look at an example:

Heap sort

● This binary tree is not a heap (not a max-heap,
not a min-heap — or a binary search tree, for
that matter):

Heap sort

● However, some of the sub-trees are guaranteed
to be heaps (right? which ones?)

Heap sort

● However, some of the sub-trees are guaranteed
to be heaps (right? which ones?)
● Hint: there's 11 sub-trees guaranteed to be heaps.

Heap sort

● The leaf nodes are (by definition) heaps, even if
“trivial” heaps.

Heap sort

● The leaf nodes are (by definition) heaps, even if
“trivial” heaps.
● This, perhaps, suggests that we could start

adjusting from the leaf nodes working our way up.

Heap sort

● In fact, working from the root and working our
way down to the leafs would be quite hard! We
don't have the heap structure anywhere, and
the swaps rely on those constraints!

Heap sort

● If working from the leaf nodes, then when we're
done at depth d, we know that everything below
there is a heap — and that's all we need for
percolations from the upper levels to work!

Heap sort

● Actually, as we'll see, the simpler way is to work
by depth, and not by leaf nodes — that is, we
start at the deepest level, and move up one
level at a time.

Heap sort

● We start processing the elements from the end,
so we start with 51, and go to its parent, 87

Heap sort

● We start processing the elements from the end,
so we start with 51, and go to its parent, 87

Heap sort

● We start processing the elements from the end,
so we start with 51, and go to its parent, 87
● All good here here — the tree rooted at 87 is

already a max-heap; nothing to do there.

Heap sort

● The sub-tree at 23 is not a max-heap; but
since everything below is, then swapping with
55 (the larger of the children) creates a
max heap.‑

Heap sort

● Same here, swapping with 86 (the larger of the
children).
● At this point (well, after swapping these), we'll have

that every sub-tree at depth 3 is a max-heap.

Heap sort

● So, we continue at the next level (up), with the
sub-tree rooted at 48 — we swap 48 with 99
(the larger of its children).

Heap sort

● Then continue

Heap sort

● Then continue

Heap sort

● Then continue

Heap sort

● Then continue Oh! surprise! why do we
need a double swap in here?

Heap sort

● Then continue Oh! surprise! why do we
need a double swap in here?
● Actually, no surprise — we're inserting 24 in the

heap below; it is to be expected that we need to
percolate it down several steps.

Heap sort

● Now up one level, and continue with 77 ...

Heap sort

● And continue ...

Heap sort

● Then the root, and after percolating it down,
we're done ...

Heap sort

● The end result is, of course, a max-heap:

Heap sort

● But the more important detail is ... (anyone?):

Heap sort

● But the more important detail is ... (anyone?):
● We call this process heapification: how cool is that !!!

Heap sort

● So, let's see if the run time of this heapification
is as cool as its name ...

Heap sort

● Because this is a binary tree, then at depth k,
we have at most 2k nodes; each of these could
require percolation all the way to the deepest
level (in the worst-case)

Heap sort

● Because this is a binary tree, then at depth k,
we have at most 2k nodes; each of these could
require percolation all the way to the deepest
level (in the worst-case)

● If we are at depth k, then that's h−k swaps
required to percolate the element (again, in the
worst-case)

● That's a total of 2k (h−k) swaps at depth k.
● The total would be (math on the next slides...)

Heap sort

● Adding for all depths (k going from 0 to h):

∑
k=0

h

2k (h−k) = h
2h+1−1

2−1
− 2(h2h−2h+1)

= h2h+1− h− h2h+1+ 2h+1− 2

= (2h+1
− 1) − (h+1)

= n− lg (n+1) = Θ(n)

Heap sort

● So, the thing is called heapification, and it runs
in linear time....

Heap sort

● So, the thing is called heapification, and it runs
in linear time....
● I mean, really, guys: how cool is that !!!

Heap sort

● So, we're done with converting the input array
into a max-heap (keep in mind that everything
we showed in the previous slides is done in the
array itself).

● What about the rest of the process?
● Keep in mind that we want to do everything

in place.‑

Heap sort

● Let's work with a “smaller” example — the
following array representing the heap shown
below:

95 81 63 70 52 28 34 17 46 3

Heap sort

● 95 is the highest element, and we want it at the
end (since we're sorting).

● If we remove it, we'd have to move the 3 to the
root and adjust....

95 81 63 70 52 28 34 17 46 3

Heap sort

● Does that perhaps give you any ideas?

95 81 63 70 52 28 34 17 46 3

Heap sort

● Does that perhaps give you any ideas?
● Is it clear at this point why we wanted a

max heap instead of a min-heap?‑

95 81 63 70 52 28 34 17 46 3

Heap sort

● Let's see it working — we dequeue the highest
element, which will open up a spot at the end;
so, we move that highest element to the end
(where it should go — recall that we're sorting!)

95 81 63 70 52 28 34 17 46 3

Heap sort

● But we also remember that dequeueing is done
by moving the last element (so that we maintain
a complete binary tree) to the root and
percolating down.

95 81 63 70 52 28 34 17 46 3

Heap sort

● So, at each step, we just swap the first element
with the last one (we need to keep a counter,
that is decreased by one at each iteration), then
percolate down the one that is now at the root.

95 81 63 70 52 28 34 17 46 3

Heap sort

● Swap 95 and 3, then percolate down 3:

95 81 63 70 52 28 34 17 46 3

Heap sort

● Swap 95 and 3, then percolate down 3:

● Green highlight indicates part of the output
● Light grey highlight shows the children of the node being

percolated

– Remember that the children of node at k are 2k and 2k+1
(if assigning first element as subscript 1)

3 81 63 70 52 28 34 17 46 95

Heap sort

● Swap 95 and 3, then percolate down 3:

81 3 63 70 52 28 34 17 46 95

Heap sort

● Swap 95 and 3, then percolate down 3:

81 70 63 3 52 28 34 17 46 95

Heap sort

● The fact that 3 made it to the last (back)
position is mere coincidence!

81 70 63 46 52 28 34 17 3 95

Heap sort

● We now swap 81 and 3, and percolate down 3:

81 70 63 46 52 28 34 17 3 95

Heap sort

● We now swap 81 and 3, and percolate down 3:

3 70 63 46 52 28 34 17 81 95

Heap sort

● We now swap 81 and 3, and percolate down 3:

70 3 63 46 52 28 34 17 81 95

Heap sort

● Done — 52 was a leaf node:

70 52 63 46 3 28 34 17 81 95

Heap sort

● Now dequeue 70 (swapping with 17 and
percolating down 70):

70 52 63 46 3 28 34 17 81 95

Heap sort

● Now dequeue 70 (swapping with 17 and
percolating down 70):

17 52 63 46 3 28 34 70 81 95

Heap sort

● Now dequeue 70 (swapping with 17 and
percolating down 70):

63 52 17 46 3 28 34 70 81 95

Heap sort

● We repeat this same process for all elements...

63 52 34 46 3 28 17 70 81 95

Heap sort

● We repeat this same process for all elements...

63 52 34 46 3 28 17 70 81 95

Heap sort

● We repeat this same process for all elements...

17 52 34 46 3 28 63 70 81 95

Heap sort

● We repeat this same process for all elements...

52 17 34 46 3 28 63 70 81 95

Heap sort

● We repeat this same process for all elements...

52 46 34 17 3 28 63 70 81 95

Heap sort

● We repeat this same process for all elements...

52 46 34 17 3 28 63 70 81 95

Heap sort

● We repeat this same process for all elements...

28 46 34 17 3 52 63 70 81 95

Heap sort

● We repeat this same process for all elements...

46 28 34 17 3 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

46 28 34 17 3 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

3 28 34 17 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

34 28 3 17 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

34 28 3 17 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

17 28 3 34 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

28 17 3 34 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

28 17 3 34 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

3 17 28 34 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

17 3 28 34 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

17 3 28 34 46 52 63 70 81 9552

Heap sort

● We repeat this same process for all elements...

3 17 28 34 46 52 63 70 81 9552

Heap sort

● The algorithm outputs the sorted array.

3 17 28 34 46 52 63 70 81 9552

Summary

● During today's lesson:
● Saw the distinction between max-heaps and

min heaps.‑
● Introduced the Heap sort algorithm
● Determined its run time
● Discuss heapification and its run time
● Argued that an algorithm that includes something

called heapification has to be considered cool upon
cool...
– But don't worry — we have Quick sort coming up next

class, so there will be no shortage of coolness !!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

