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Standard reminder to set phones to 
silent/vibrate mode, please!



  

Heap sort

● Last time, on ECE-250... 
● Talked about heaps as a structure suitable to 

implement priority queues.
● Discussed the detail that dequeuing can be seen as 

extracting the values in order.
● Noticed one obstacle that we'd face if we try to use 

such structure for the purpose of sorting.



  

Heap sort

● Even before that... 
● We had seen that log(n!) = Θ(n log n)

– log(n!) = log n + log (n−1) + log (n−2) + ··· + log 3 + log 2

● Also, we had seen that ∑
k=1

n

k 2k = 2(n2n−2n+1)



  

Heap sort

● During today's lesson:
● Discuss the notion of max-heap  (vs. min-heap, 

which is what we saw last time)
● Introduce the Heap sort algorithm
● Discuss its run time
● Discuss heapification and its run time



  

Heap sort

● During today's lesson:
● Discuss the notion of max-heap  (vs. min-heap, 

which is what we saw last time)
● Introduce the Heap sort algorithm
● Discuss its run time
● Discuss heapification and its run time

( ... heapification ...  How cool is that !!)



  

Heap sort

● Starting with a preliminary ...
● Max-heaps vs. min-heaps: 

– The constraints in the nodes in a binary tree that define it 
to be a heap is based on the parent node being less than 
either one of the children.
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– What if we defined it to be that the parent node has to be 
greater than either one of the children?



  

Heap sort

● Starting with a preliminary ...
● Max-heaps vs. min-heaps: 

– The constraints in the nodes in a binary tree that define it 
to be a heap is based on the parent node being less than 
either one of the children.

– What if we defined it to be that the parent node has to be 
greater than either one of the children?

● Clearly, the structure, the kinds of tricks that we can do and that 
are guaranteed to work given the constraints, would continue to 
work  (as long as we adapt them to the constraint “backwards”)



  

Heap sort

● Starting with a preliminary ...
● This is basically the notion of a max-heap — the 

relationship between parent and children defines 
the type of heap:
– Parent < either one of the children:  Min-heap
– Parent > either one of the children:  Max-heap



  

Heap sort

● Starting with a preliminary ...
● Everything that we discussed last time works 

exactly the same with either max-heaps or 
min heaps  (insertions, removals, percolations, ‑
etc.).
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● Of course, matching all conditions — for example, 
when percolating up, we saw that we need to 
promote the lower of the two children.



  

Heap sort

● Starting with a preliminary ...
● Everything that we discussed last time works 

exactly the same with either max-heaps or 
min heaps  (insertions, removals, percolations, ‑
etc.).

● Of course, matching all conditions — for example, 
when percolating up, we saw that we need to 
promote the lower of the two children.
– With a max-heap, of course, we promote the larger of the 

two children
– Same thing when percolating down — we swap with the 

larger of the children, instead of with the lower as we saw 
last time (for min-heaps)
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● Moving on to the heap sort ... 



  

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case 

logarithmic time;  thus, n insertions would take 
Θ(n log n) — more specifically, it would take 
Θ(log n!), but that's Θ(n log n) as we recall.
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Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case 

logarithmic time;  thus, n insertions would take 
Θ(n log n) — more specifically, it would take 
Θ(log n!), but that's Θ(n log n) as we recall.
 

(BTW... why is the run time Θ(log n!) ??)

If the heap is initially empty, then with each 
insertion, the size grows by 1 element;  adding the 
run times of the insertions we get:
 

log 1 + log 2 + log 3 + ··· + log (n−1) + log n  =  log(n!)



  

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case 

logarithmic time;  thus, n insertions would take 
Θ(n log n) — more specifically, it would take 
Θ(log n!), but that's Θ(n log n) as we recall.
 

● After that, removing each element (always the 
lowest value) takes logarithmic time each;  so, 
removing them all takes another Θ(log n!)
– But that means that we took a sequence of values and 

output the same values in sorted sequence ...  
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Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case 

logarithmic time;  thus, n insertions would take 
Θ(n log n) — more specifically, it would take 
Θ(log n!), but that's Θ(n log n) as we recall.
 

● After that, removing each element (always the 
lowest value) takes logarithmic time each;  so, 
removing them all takes another Θ(log n!)
– But that means that we took a sequence of values and 

output the same values in sorted sequence ...  And it all 
happened in Θ(n log n) — how cool is that !!



  

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using 

additional storage ( Θ(n) ), but we need a heap, 
instead of just an array.
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– Ok, except that we saw that heaps can be implemented 

using array storage  (maintaining a complete binary tree)



  

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using 

additional storage ( Θ(n) ), but we need a heap, 
instead of just an array.
– Ok, except that we saw that heaps can be implemented 

using array storage  (maintaining a complete binary tree)
● Another key aspect is that we saw how most 

operations with heaps are done by just swapping 
nodes — this suggests that doing things in-place 
should be feasible!
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● Since we're starting with an array of arbitrary 
values, and we want to work in-place (that is, 
we'll want that array to be the heap itself), it 
makes sense to solve the problem of turning a 
binary tree with arbitrary, unconstrained data, 
into a valid max-heap.
● It will become clear why we want to use a 

max heap.‑
 

● Let's look at an example:



  

Heap sort

● This binary tree is not a heap (not a max-heap, 
not a min-heap — or a binary search tree, for 
that matter):



  

Heap sort

● However, some of the sub-trees are guaranteed 
to be heaps  (right?  which ones?)



  

Heap sort

● However, some of the sub-trees are guaranteed 
to be heaps  (right?  which ones?)
● Hint:  there's 11 sub-trees guaranteed to be heaps.



  

Heap sort

● The leaf nodes are (by definition) heaps, even if 
“trivial” heaps.



  

Heap sort

● The leaf nodes are (by definition) heaps, even if 
“trivial” heaps.
● This, perhaps, suggests that we could start 

adjusting from the leaf nodes working our way up.



  

Heap sort

● In fact, working from the root and working our 
way down to the leafs would be quite hard!  We 
don't have the heap structure anywhere, and 
the swaps rely on those constraints!
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● If working from the leaf nodes, then when we're 
done at depth d, we know that everything below 
there is a heap — and that's all we need for 
percolations from the upper levels to work!
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● Actually, as we'll see, the simpler way is to work 
by depth, and not by leaf nodes — that is, we 
start at the deepest level, and move up one 
level at a time.
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● We start processing the elements from the end, 
so we start with 51, and go to its parent, 87
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● We start processing the elements from the end, 
so we start with 51, and go to its parent, 87
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● We start processing the elements from the end, 
so we start with 51, and go to its parent, 87
● All good here here — the tree rooted at 87 is 

already a max-heap;  nothing to do there.
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● The sub-tree at 23 is not a max-heap;  but 
since everything below is, then swapping with 
55 (the larger of the children) creates a 
max heap.‑
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● Same here, swapping with 86 (the larger of the 
children).
● At this point (well, after swapping these), we'll have 

that every sub-tree at depth 3 is a max-heap.
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● So, we continue at the next level (up), with the 
sub-tree rooted at 48 — we swap 48 with 99 
(the larger of its children).
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● Then continue ....
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● Then continue ....
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● Then continue ....
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● Then continue ....  Oh! surprise! why do we 
need a double swap in here?



  

Heap sort

● Then continue ....  Oh! surprise! why do we 
need a double swap in here?
● Actually, no surprise — we're inserting 24 in the 

heap below;  it is to be expected that we need to 
percolate it down several steps.
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● Now up one level, and continue with 77 ... 
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● And continue ... 
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● Then the root, and after percolating it down, 
we're done ... 
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● The end result is, of course, a max-heap: 



  

Heap sort

● But the more important detail is ...  (anyone?): 
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● But the more important detail is ...  (anyone?):
● We call this process heapification: how cool is that !!!
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● So, let's see if the run time of this heapification 
is as cool as its name ... 



  

Heap sort

● Because this is a binary tree, then at depth k, 
we have at most 2k nodes;  each of these could 
require percolation all the way to the deepest 
level (in the worst-case)



  

Heap sort

● Because this is a binary tree, then at depth k, 
we have at most 2k nodes;  each of these could 
require percolation all the way to the deepest 
level (in the worst-case)

● If we are at depth k, then that's h−k swaps 
required to percolate the element (again, in the 
worst-case)

● That's a total of 2k (h−k) swaps at depth k.
● The total would be  (math on the next slides...)
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● Adding for all depths (k going from 0 to h):

∑
k=0

h

2k (h−k ) = h
2h+1−1

2−1
− 2(h2h−2h+1)

= h2h+1− h− h2h+1+ 2h+1− 2

= (2h+1
− 1) − (h+1)

= n− lg (n+1) = Θ(n)
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● So, the thing is called heapification, and it runs 
in linear time....
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● So, the thing is called heapification, and it runs 
in linear time....
● I mean, really, guys:  how cool is that !!!
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● So, we're done with converting the input array 
into a max-heap  (keep in mind that everything 
we showed in the previous slides is done in the 
array itself).
 

● What about the rest of the process? 
● Keep in mind that we want to do everything 

in place.‑
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● Let's work with a “smaller” example — the 
following array representing the heap shown 
below:

95 81 63 70 52 28 34 17 46 3
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● 95 is the highest element, and we want it at the 
end (since we're sorting).

● If we remove it, we'd have to move the 3 to the 
root and adjust....

95 81 63 70 52 28 34 17 46 3
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● Does that perhaps give you any ideas?

95 81 63 70 52 28 34 17 46 3
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● Does that perhaps give you any ideas?
● Is it clear at this point why we wanted a 

max heap instead of a min-heap?‑

95 81 63 70 52 28 34 17 46 3
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● Let's see it working — we dequeue the highest 
element, which will open up a spot at the end;  
so, we move that highest element to the end 
(where it should go — recall that we're sorting!)

95 81 63 70 52 28 34 17 46 3
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● But we also remember that dequeueing is done 
by moving the last element (so that we maintain 
a complete binary tree) to the root and 
percolating down.

95 81 63 70 52 28 34 17 46 3
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● So, at each step, we just swap the first element 
with the last one (we need to keep a counter, 
that is decreased by one at each iteration), then 
percolate down the one that is now at the root.

95 81 63 70 52 28 34 17 46 3
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● Swap 95 and 3, then percolate down 3:

95 81 63 70 52 28 34 17 46 3
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● Swap 95 and 3, then percolate down 3:

● Green highlight indicates part of the output
● Light grey highlight shows the children of the node being 

percolated

– Remember that the children of node at k are 2k and 2k+1
(if assigning first element as subscript 1)

3 81 63 70 52 28 34 17 46 95
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● Swap 95 and 3, then percolate down 3:

81 3 63 70 52 28 34 17 46 95
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● Swap 95 and 3, then percolate down 3:

81 70 63 3 52 28 34 17 46 95



  

Heap sort

● The fact that 3 made it to the last (back) 
position is mere coincidence!

81 70 63 46 52 28 34 17 3 95
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● We now swap 81 and 3, and percolate down 3:

81 70 63 46 52 28 34 17 3 95
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● We now swap 81 and 3, and percolate down 3:

3 70 63 46 52 28 34 17 81 95
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● We now swap 81 and 3, and percolate down 3:

70 3 63 46 52 28 34 17 81 95
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● Done — 52 was a leaf node:

70 52 63 46 3 28 34 17 81 95
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● Now dequeue 70 (swapping with 17 and 
percolating down 70):

70 52 63 46 3 28 34 17 81 95
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● Now dequeue 70 (swapping with 17 and 
percolating down 70):

17 52 63 46 3 28 34 70 81 95
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● Now dequeue 70 (swapping with 17 and 
percolating down 70):

63 52 17 46 3 28 34 70 81 95
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● We repeat this same process for all elements...

63 52 34 46 3 28 17 70 81 95



  

Heap sort

● We repeat this same process for all elements...

63 52 34 46 3 28 17 70 81 95
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● We repeat this same process for all elements...

17 52 34 46 3 28 63 70 81 95



  

Heap sort

● We repeat this same process for all elements...

52 17 34 46 3 28 63 70 81 95
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● We repeat this same process for all elements...

52 46 34 17 3 28 63 70 81 95
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● We repeat this same process for all elements...

52 46 34 17 3 28 63 70 81 95
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● We repeat this same process for all elements...

28 46 34 17 3 52 63 70 81 95
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● We repeat this same process for all elements...

46 28 34 17 3 52 63 70 81 9552
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● We repeat this same process for all elements...

46 28 34 17 3 52 63 70 81 9552
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● We repeat this same process for all elements...

3 28 34 17 46 52 63 70 81 9552
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● We repeat this same process for all elements...

34 28 3 17 46 52 63 70 81 9552
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● We repeat this same process for all elements...

34 28 3 17 46 52 63 70 81 9552
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● We repeat this same process for all elements...

17 28 3 34 46 52 63 70 81 9552
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● We repeat this same process for all elements...

28 17 3 34 46 52 63 70 81 9552
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● We repeat this same process for all elements...

28 17 3 34 46 52 63 70 81 9552
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● We repeat this same process for all elements...

3 17 28 34 46 52 63 70 81 9552
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● We repeat this same process for all elements...

17 3 28 34 46 52 63 70 81 9552
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● We repeat this same process for all elements...

17 3 28 34 46 52 63 70 81 9552
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● We repeat this same process for all elements...

3 17 28 34 46 52 63 70 81 9552
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● The algorithm outputs the sorted array.

3 17 28 34 46 52 63 70 81 9552



  

Summary

● During today's lesson:
● Saw the distinction between max-heaps and 

min heaps.‑
● Introduced the Heap sort algorithm
● Determined its run time
● Discuss heapification and its run time
● Argued that an algorithm that includes something 

called heapification has to be considered cool upon 
cool... 
– But don't worry — we have Quick sort coming up next 

class, so there will be no shortage of coolness !!
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