

Heap sort

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

http://xkcd.com/835/

Heap sort

Standard reminder to set phones to
silent/vibrate mode, please!

Heap sort

● Last time, on ECE-250...
● Talked about heaps as a structure suitable to

implement priority queues.
● Discussed the detail that dequeuing can be seen as

extracting the values in order.
● Noticed one obstacle that we'd face if we try to use

such structure for the purpose of sorting.

Heap sort

● Even before that...
● We had seen that log(n!) = Θ(n log n)

– log(n!) = log n + log (n−1) + log (n−2) + ··· + log 3 + log 2

● Also, we had seen that ∑
k=1

n

k 2k = 2(n2n−2n+1)

Heap sort

● Even before that...
● We had seen that log(n!) = Θ(n log n)

– log(n!) = log n + log (n−1) + log (n−2) + ··· + log 3 + log 2

● Also, we had seen that

... say that we leave it at Θ(n 2n)

∑
k=1

n

k 2k = 2(n2n−2n+1)

Heap sort

● During today's lesson:
● Discuss the notion of max-heap (vs. min-heap,

which is what we saw last time)
● Introduce the Heap sort algorithm
● Discuss its run time
● Discuss heapification and its run time

Heap sort

● During today's lesson:
● Discuss the notion of max-heap (vs. min-heap,

which is what we saw last time)
● Introduce the Heap sort algorithm
● Discuss its run time
● Discuss heapification and its run time

(... heapification ... How cool is that !!)

Heap sort

● Starting with a preliminary ...
● Max-heaps vs. min-heaps:

– The constraints in the nodes in a binary tree that define it
to be a heap is based on the parent node being less than
either one of the children.

– What if we defined it to be that the parent node has to be
greater than either one of the children?

● Clearly, the structure, the kinds of tricks that we can do and that
are guaranteed to work given the constraints, would continue to
work (as long as we adapt them to the constraint “backwards”)

Heap sort

● Starting with a preliminary ...
● This is basically the notion of a max-heap — the

relationship between parent and children defines
the type of heap:
– Parent < either one of the children: Min-heap
– Parent > either one of the children: Max-heap

● Everything that we discussed last time works
exactly the same with either max-heaps or
min heaps (insertions, removals, percolations, ‑
etc.).

Heap sort

● Moving on to the heap sort ...

Heap sort

● Basic idea (i.e., what we're after):
● Heaps allow us to do insertions in worst-case

logarithmic time; thus, n insertions would take
Θ(n log n) — more specifically, it would take
Θ(log n!), but that's Θ(n log n) as we recall.

● After that, removing each element (always the
lowest value) takes logarithmic time each; so,
removing them all takes another Θ(log n!)
– But that means that we took a sequence of values and

output the same values in sorted sequence ... In
Θ(n log n) — how cool is that !!

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using

additional storage (Θ(n)), but we need a heap,
instead of just an array.

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using

additional storage (Θ(n)), but we need a heap,
instead of just an array.
– Ok, except that we saw that heaps can be implemented

using array storage (maintaining a complete binary tree)

Heap sort

● Basic idea (i.e., what we're after):
● Oh, wait — we wanted to do it in-place...
● With the approach described, not only we're using

additional storage (Θ(n)), but we need a heap,
instead of just an array.
– Ok, except that we saw that heaps can be implemented

using array storage (maintaining a complete binary tree)
● The other aspect that should make us optimistic is

that we saw how most operations with heaps are
done by just swapping nodes — this suggests that
doing things in-place should be feasible!

Heap sort

● Since we're starting with an array of arbitrary
values, and we want to work in-place (that is,
we'll want that array to be the heap itself), it
makes sense to solve the problem of turning a
binary tree with arbitrary, unconstrained data,
into a valid heap.

● Let's look at an example:

Heap sort

● This binary tree is not a heap (or a binary
search tree, for that matter):

Heap sort

● However, some of the sub-trees are guaranteed
to be heaps (right? which ones?)

Heap sort

● However, some of the sub-trees are guaranteed
to be heaps (right? which ones?)
● Hint: there's 11 sub-trees guaranteed to be heaps.

Heap sort

● The leaf nodes are (by definition) heaps, even if
“trivial” heaps.

Heap sort

● The leaf nodes are (by definition) heaps, even if
“trivial” heaps.
● This, perhaps, suggests that we could start

adjusting from the leaf nodes working our way up.

Heap sort

● In fact, working from the root and working our
way down to the leafs would be quite hard! We
don't have the heap structure anywhere, and
the swaps rely on those constraints!

Heap sort

● If working from the leaf nodes, then when we're
done at depth d, we know that everything below
there is a heap — and that's all we need for
percolations from the upper levels to work!

Heap sort

● Actually, as we'll see, the simpler way is to work
by depth, and not by leaf nodes — that is, we
start at the deepest level, and move up one
level at a time.

Heap sort

● We'll look at the procedure in class — with the
hints so far, do you want to give it a try?

Heap sort

● So this is what it will look like once heapified.
● We'll talk about its run time in class.

Heap sort

● What about the rest of the process?
Remember that this is stored in an array, and
we want to do everything in-place.

Heap sort

● Let's work with a “smaller” example — the
following array representing the heap shown
below:

Heap sort

● 95 is the highest element, and we want it at the
end (since we're sorting, so we want an
ascending sequence).

● If we remove it, we'd have to move the 3 to the
root and adjust....

Heap sort

● Does that perhaps give you any ideas?

Heap sort

● Does that perhaps give you any ideas?
● Is it clear at this point why we wanted a

max heap instead of a min-heap?‑

Heap sort

● Try it out!!
● We'll complete the discussion in class, and will

look at several examples.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

