

Quick sort

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Photo courtesy of ellenmc / Flickr:
http://www.flickr.com/photos/ellenmc/4508741746/

Quick sort

Standard reminder to set phones to
silent/vibrate mode, please!

Quick sort

● Previously, on ECE-250...
● Introduced sorting and related concepts
● Discussed some of the important sorting algorithms.
● In particular, merge sort and heap sort

Quick sort

● Previously, on ECE-250...
● Introduced sorting and related concepts
● Discussed some of the important sorting algorithms.
● In particular, merge sort and heap sort

– With merge sort, we split in two halves, sort each one,
then merge the sorted halves

● Divide-and-conquer !

Quick sort

● During today's class:
● We'll look into quick sort

Quick sort

● During today's class:
● We'll look into quick sort, the most widely used

sorting algorithm (at least in general-purpose
libraries and software out there)
– Discuss the basic idea behind the algorithm
– Look into its run time, with emphasis on average-case vs.

Worst-case (interesting plot twist in this area!)
– Discuss some of the strategies to avoid the worst-case

● Work through some examples.

Quick sort

● To introduce the basic idea, let's first recall what
the main problem was with merge sort...

Quick sort

● To introduce the basic idea, let's first recall what
the main problem was with merge sort...
● The merge operation can not be done in-place

Quick sort

● To introduce the basic idea, let's first recall what
the main problem was with merge sort...
● The merge operation can not be done in-place

– This not only has the immediate implication that we
require the extra space, but it also has an implication on
the performance — the data is being moved a lot, and so
this has a performance penalty!

● Even more critical if the data is expensive to copy (e.g., strings,
data that is really on disk or some extra-slow hardware devices)

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence:

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence:

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence: 5

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence: 5, 11

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16, 23

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16, 23, 35

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16, 23, 35 · · · etc.

Quick sort

● The obvious question is: can we do a merge
sort without requiring extra storage?
● Let's try merging the following two sorted

sequences:

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

We might be tempted to think of the items at the left
of the arrows as available space ... But ...

Quick sort

● We don't have room in either sequence to place
the output values from the other sequence (we
have no control on how the pointer from one
sequence advances with respect to the one for
the other sequence):

 Sequence A: 11, 23, 40, 57, 68, 93
 Sequence B: 5, 16, 35, 46, 79, 96

Quick sort

● Let's make the long story short, and just face it:
it can not be done!!!

Quick sort

● Bottom line with merge sort — the problem
seems to be due to the fact that we first sort
each half, then combine the results.

Quick sort

● Bottom line with merge sort — the problem
seems to be due to the fact that we first sort
each half, then combine the results.
● And yes, one might think “well, duh! of course we

do that — what else are we going to do?”

Quick sort

● Bottom line with merge sort — the problem
seems to be due to the fact that we first sort
each half, then combine the results.
● And yes, one might think “well, duh! of course we

do that — what else are we going to do?”

● But that's actually an excellent question! Is there
something else we could do?

Quick sort

● Bottom line with merge sort — the problem
seems to be due to the fact that we first sort
each half, then combine the results.
● And yes, one might think “well, duh! of course we

do that — what else are we going to do?”

● But that's actually an excellent question! Is there
something else we could do?
– Perhaps going the other way around — could we do

some processing first such that the elements end up in a
way that when we recursively sort each half we're done?

Quick sort

● Let's reformulate that question:
● Suppose that I give you sequence A and

sequence B, one after the other one, as shown
below:

a1,a2, ⋯ , an−1 , an⏟
Sequence A

b1,b2, ⋯ , bn−1 ,bn⏟
Sequence B

Quick sort

● Let's reformulate that question:
● Suppose that I give you sequence A and

sequence B, one after the other one, as shown
below:

● And suppose I told you that if we sort sequence
A and sort sequence B, then the complete
sequence will be sorted — what does that tell
you about the values in both sequences?

a1,a2, ⋯ , an−1 , an⏟
Sequence A

b1,b2, ⋯ , bn−1 ,bn⏟
Sequence B

Quick sort

● This is the central aspect behind quicksort's
idea/functionality:

Quick sort

● This is the central aspect behind quicksort's
idea/functionality:
● If every value in sequence A is less than every

value in sequence B, then when we (recursively)
sort each sequence, we would be done (that is, the
entire sequence would be sorted)

Quick sort

● Let's try the following (hopefully in linear time):
● Back to sequences A and B from earlier, we'll take a

value (say, 45) to compare — if a value from
sequence A is > 45, then it should be moved to B,
and if a value from sequence B is < 45, then it
should be moved to A.

Quick sort

● Let's try the following (hopefully in linear time):
● Back to sequences A and B from earlier, we'll take a

value (say, 45) to compare — if a value from
sequence A is > 45, then it should be moved to B,
and if a value from sequence B is < 45, then it
should be moved to A.

● We can definitely do this in linear time — scan each
of the arrays for elements matching the condition,
then swap them!

Quick sort

● Partitioning process:

Sequence A: 40, 23, 11, 93, 68, 57

Sequence B: 46, 5, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Look for a value > 45 in A, and a value < 45 in B:

Sequence A: 40, 23, 11, 93, 68, 57

Sequence B: 46, 5, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Look for a value > 45 in A, and a value < 45 in B:

Sequence A: 40, 23, 11, 93, 68, 57

Sequence B: 46, 5, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Look for a value > 45 in A, and a value < 45 in B:

– Then swap them

Sequence A: 40, 23, 11, 93, 68, 57

Sequence B: 46, 5, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Look for a value > 45 in A, and a value < 45 in B:

– Then swap them

Sequence A: 40, 23, 11, 5, 68, 57

Sequence B: 46, 93, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Next...

Sequence A: 40, 23, 11, 5, 68, 57

Sequence B: 46, 93, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Next...

Sequence A: 40, 23, 11, 5, 68, 57

Sequence B: 46, 93, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Next... then swap them

Sequence A: 40, 23, 11, 5, 68, 57

Sequence B: 46, 93, 96, 79, 16, 35

Quick sort

● Partitioning process:
● Next... then swap them

Sequence A: 40, 23, 11, 5, 16, 57

Sequence B: 46, 93, 96, 79, 68, 35

Quick sort

● Partitioning process:
● Next...

Sequence A: 40, 23, 11, 5, 16, 57

Sequence B: 46, 93, 96, 79, 68, 35

Quick sort

● Partitioning process:
● Next... then swap them

Sequence A: 40, 23, 11, 5, 16, 35

Sequence B: 46, 93, 96, 79, 68, 57

Quick sort

● Partitioning process:
● Done! Now every value in sequence A is less than

every value in sequence B (we now sort A, then
sort B, and then sorting of the whole sequence is
completed!)

Sequence A: 40, 23, 11, 5, 16, 35

Sequence B: 46, 93, 96, 79, 68, 57

Quick sort

● Anyone sees the severe flaw with this
example?

Sequence A: 40, 23, 11, 5, 16, 35

Sequence B: 46, 93, 96, 79, 68, 57

Quick sort

● How did (or how could) we know that we had to
compare against 45 to swap?

Quick sort

● How did (or how could) we know that we had to
compare against 45 to swap?

● Or equivalently, once picked a value, how do
we know that we have room enough in
sequence A for all elements < the value and in
sequence B for all elements > the value?

Quick sort

● How did (or how could) we know that we had to
compare against 45 to swap?

● Or equivalently, once picked a value, how do
we know that we have room enough in
sequence A for all elements < the value and in
sequence B for all elements > the value?
● The answer is: we don't know that we'll have

enough room — because we won't have enough
room in general.

Quick sort

● If we had chosen, say, 20, then we would have
had 3 values that had to go in sequence A, and
9 values in sequence B

Quick sort

● If we had chosen, say, 20, then we would have
had 3 values that had to go in sequence A, and
9 values in sequence B
● Ermm... wait! Why is that a problem??

Quick sort

● If we had chosen, say, 20, then we would have
had 3 values that had to go in sequence A, and
9 values in sequence B
● Ermm... wait! Why is that a problem??
● Could we not just recursively sort the 3-element

sequence, then sort the 9-element sequence?

Quick sort

● We have two obstacles if we do that:
● If we pick some value without knowing the sizes of

the two resulting subsequences, how do we know
where to swap?

Quick sort

● We have two obstacles if we do that:
● If we pick some value without knowing the sizes of

the two resulting subsequences, how do we know
where to swap? (we'll see in a minute that this one
can be addressed rather easily)

Quick sort

● We have two obstacles if we do that:
● If we pick some value without knowing the sizes of

the two resulting subsequences, how do we know
where to swap? (we'll see in a minute that this one
can be addressed rather easily)

● The other problem is: don't we need to partition into
two equal size chunks to obtain Θ(n log n) run time?

Quick sort

● The answer is, no — with partitions of unequal
size, we still obtain Θ(n log n), just with a larger
proportionality constant (so, it is slower — just
not in terms of asymptotic notation)

Quick sort

● The answer is, no — with partitions of unequal
size, we still obtain Θ(n log n), just with a larger
proportionality constant (so, it is slower — just
not in terms of asymptotic notation)
● Provided that the sizes of the partition are

proportional to n — that is, so long as the partitions
have sizes an and (1−a)n.

Quick sort

● The answer is, no — with partitions of unequal
size, we still obtain Θ(n log n), just with a larger
proportionality constant (so, it is slower — just
not in terms of asymptotic notation)
● Provided that the sizes of the partition are

proportional to n — that is, so long as the partitions
have sizes an and (1−a)n.

● What if they don't? In particular, what if the
partitions, for some unlucky coincidence, always
end up being size 1 and size n−1 ??

Quick sort

● In fact, if we're doing a worst-case run time
analysis, we would have to consider this
outcome — partitions are always 1 and n−1.

Quick sort

● In fact, if we're doing a worst-case run time
analysis, we would have to consider this
outcome — partitions are always 1 and n−1.
● What's the run time of this?

Quick sort

● In fact, if we're doing a worst-case run time
analysis, we would have to consider this
outcome — partitions are always 1 and n−1.
● What's the run time of this?
● Again we recognize the arithmetic sum — a sort of

size n leads to one of size n−1, plus one of size
n−2, plus · · · all the way down to 1.

● And this is Θ(n²)

Quick sort

● So, perhaps the more interesting question is:

Quick sort

● So, perhaps the more interesting question is:
● Why on earth are we talking about this algorithm,

that we're seeing has quadratic run time ??!!!

Quick sort

● So, perhaps the more interesting question is:
● Why on earth are we talking about this algorithm,

that we're seeing has quadratic run time ??!!!
● Let's say that this is definitely one of the remarkable

aspects of this algorithm: it does have worst-case
run time Θ(n²), but:

Quick sort

● So, perhaps the more interesting question is:
● Why on earth are we talking about this algorithm,

that we're seeing has quadratic run time ??!!!
● Let's say that this is definitely one of the remarkable

aspects of this algorithm: it does have worst-case
run time Θ(n²), but:
– On average, quick sort outperforms every other sorting

algorithm known!

Quick sort

● So, perhaps the more interesting question is:
● Why on earth are we talking about this algorithm,

that we're seeing has quadratic run time ??!!!
● Let's say that this is definitely one of the remarkable

aspects of this algorithm: it does have worst-case
run time Θ(n²), but:
– On average, quick sort outperforms every other sorting

algorithm known!
– Equally (or more) importantly: if implemented properly,

we can ensure the chances of hitting the worst-case to
be essentially negligible.

Quick sort

● Just one more detail before we're ready to see
quick sort in action!

● Let's look at the notion of the median of a set of
values.

Quick sort

● Just one more detail before we're ready to see
quick sort in action!

● Let's look at the notion of the median of a set of
values.
● The median is a statistical measure of a set of

values, somewhat similar to the mean, or average,
but quite interesting:

● Given a set of values the
median is one of the values in the sequence, ,
such that there are as many elements as
there are elements

{x1, x2, ⋯ , xn−1 , xn}
xm

x i<xm
x k>xm

Quick sort

● Visually, this notion of the median corresponds
to the following: place the elements in order;
then, pick the middle element.

Quick sort

● Visually, this notion of the median corresponds
to the following: place the elements in order;
then, pick the middle element.

● The problem is, algorithms to find the median
are not very efficient — in many cases, one
simply sorts and then picks the middle element.
● So, if we're needing the median as part of a sorting

procedure, we're kind of stuck, like a dog chasing
its tail !!

Quick sort

● What about an approximation of the median??
● Something that, on average, is close to the median.
● As it turns out, this is quite useful for quicksort !!

Quick sort

● Let's do the following experiment:
● We'll work in groups of three or four; you'll shuffle a

quarter of a deck of cards, with values from 1 to 13
(obviously, we associate A ↔ 1, J ↔ 11, Q ↔ 12,
and K ↔ 13)

● Now, pick the first, last, and middle cards, and you'll
write down the median of those three cards (for
example, if you get 8, 3, and Q, the median is 8)

Quick sort

● At the time that I'm writing this, I don't have the
results of the experiment, but it will most likely
be something in the range of an average of 2 or
3 of deviation with respect to the true median
(which is 7 in this case).
● That means that on average, we're splitting the

range into 65% − 35% chunks; not too bad in terms
of the performance that we get.
– We want something that is as close as possible to the

actual median, so that the partition is as close as possible
to 50% − 50% But we also want something that is
efficient!

Quick sort

● Side note — as we all saw during class, the
average deviation was 2.11
● Indeed, something close to a 65% − 35%

partitioning on average.

Quick sort

● We're ready to see quick sort in action!
● Given the sequence of n elements, we choose,

using perhaps the median of three, the element
called the pivot. (the value that will be used to
compare and determine when to swap values)
– Thus, the value that will determine the resulting partition.

Quick sort

● We're ready to see quick sort in action!
● Given the sequence of n elements, we choose,

using perhaps the median of three, the element
called the pivot. (the value that will be used to
compare and determine when to swap values)
– Thus, the value that will determine the resulting partition.

● Then, we start at the beginning looking for values
that should go to the second chunk, and at the end
looking for values that should go to the first chunk,
and we swap when we find them.

Quick sort

● Consider the following array, and inspect the
first, middle, and last elements:

Quick sort

● We select 57 (the median of {57,81,34}) as the
pivot:
● We send the lower value to the beginning, and

leave the pivot out of this for the moment...

Quick sort

● Now we start scanning from the second
location looking for values > 57, and from the
second-to-last, searching backwards for values
< 57

Quick sort

● We find:
● 70 > 57, and
● 49 < 57

Quick sort

● So we swap them:

Quick sort

● Then we scan forward until we find 97 > 57
and search backward until we find 16 < 57

Quick sort

● So we swap them.

Quick sort

● Then continue ...

Quick sort

● Then continue ...

Quick sort

● Then continue ...

Quick sort

● Then continue ...

Quick sort

● Then continue ...

Quick sort

● Then continue ...

Quick sort

● We search forward until finding 76 > 57 and
search backward until we find 9 < 57
● But now the indices are reversed, so that means

that we completed the loop (i.e., indices in the
wrong order is the stop condition for the loop).

Quick sort

● We move the element at the larger index to the
end, and place the pivot at the empty location in
the middle.

Quick sort

● Now the pivot, 57, is at the right position, and
everything before that position it is less than 57,
and everything after that position is greater than
57.

Quick sort

● Now the pivot, 57, is at the right position, and
everything before that position it is less than 57,
and everything after that position is greater than
57.
● If we now (recursively) sort the first chunk, then the

second chunk, we end up with a sorted array!

Quick sort

● For the first chunk (elements before 57, not
including it), things would go like this:

Quick sort

● For the first chunk (elements before 57, not
including it), things would go like this:

Quick sort

● For the first chunk (elements before 57, not
including it), things would go like this:

Quick sort

● For the first chunk (elements before 57, not
including it), things would go like this:

Quick sort

● For the first chunk (elements before 57, not
including it), things would go like this:
● Indices are reversed, so we're done with this loop.

Quick sort

● For the first chunk (elements before 57, not
including it), things would go like this:
● Send 38 (the element at the larger index) to the last

position, and the pivot, 24, to the middle position.

Quick sort

● Etc.

Quick sort

● Not much of a plot twist this time (Heap sort
did it !), when we narrow down the chunk to a
small size, then we use insertion sort, instead
of recursively calling quick sort (for small
enough sizes, insertion sort is faster!)

Quick sort

● If this example didn't clarify things enough, you
may want to look at this video clip of Quick sort
with Hungarian folk dance:

http://www.youtube.com/watch?v=ywWBy6J5gz8

http://www.youtube.com/watch?v=ywWBy6J5gz8

Summary

● During today's class:
● Introduced quick sort
● Discussed the basic idea behind the algorithm and

its run time.
– Investigated the average-case vs. worst-case issue.
– Discussed strategies to avoid the worst-case

● Looked at an example of operation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100

