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Quick sort

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Quick sort

● Previously, on ECE-250...
● Introduced sorting and related concepts
● Discussed some of the important sorting algorithms.
● In particular, merge sort and heap sort



  

Quick sort

● Previously, on ECE-250...
● Introduced sorting and related concepts
● Discussed some of the important sorting algorithms.
● In particular, merge sort and heap sort

– With merge sort, we split in two halves, sort each one, 
then merge the sorted halves

● Divide-and-conquer !



  

Quick sort

● During today's class:
● We'll look into quick sort



  

Quick sort

● During today's class:
● We'll look into quick sort, the most widely used 

sorting algorithm  (at least in general-purpose 
libraries and software out there)
– Discuss the basic idea behind the algorithm
– Look into its run time, with emphasis on average-case vs. 

Worst-case  (interesting plot twist in this area!)
– Discuss some of the strategies to avoid the worst-case

● Work through some examples.
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● To introduce the basic idea, let's first recall what 
the main problem was with merge sort...
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Quick sort

● To introduce the basic idea, let's first recall what 
the main problem was with merge sort...
● The merge operation can not be done in-place

– This not only has the immediate implication that we 
require the extra space, but it also has an implication on 
the performance — the data is being moved a lot, and so 
this has a performance penalty!

● Even more critical if the data is expensive to copy  (e.g., strings, 
data that is really on disk or some extra-slow hardware devices)



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

Output sequence:
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● The obvious question is:  can we do a merge 
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● Let's try merging the following two sorted 
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Output sequence: 



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

Output sequence: 5



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

Output sequence: 5, 11



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16, 23



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16, 23, 35



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

Output sequence: 5, 11, 16, 23, 35  · · ·  etc.



  

Quick sort

● The obvious question is:  can we do a merge 
sort without requiring extra storage?
● Let's try merging the following two sorted 

sequences:

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96

We might be tempted to think of the items at the left 
of the arrows as available space ... But ... 



  

Quick sort

● We don't have room in either sequence to place 
the output values from the other sequence  (we 
have no control on how the pointer from one 
sequence advances with respect to the one for 
the other sequence):

 

    Sequence A:  11, 23, 40, 57, 68, 93
    Sequence B:    5, 16, 35, 46, 79, 96



  

Quick sort

● Let's make the long story short, and just face it:  
it can not be done!!!



  

Quick sort

● Bottom line with merge sort — the problem 
seems to be due to the fact that we first sort 
each half, then combine the results. 
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● Bottom line with merge sort — the problem 
seems to be due to the fact that we first sort 
each half, then combine the results.
● And yes, one might think  “well, duh! of course we 

do that — what else are we going to do?” 
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● Bottom line with merge sort — the problem 
seems to be due to the fact that we first sort 
each half, then combine the results.
● And yes, one might think  “well, duh! of course we 

do that — what else are we going to do?”

● But that's actually an excellent question!  Is there 
something else we could do?



  

Quick sort

● Bottom line with merge sort — the problem 
seems to be due to the fact that we first sort 
each half, then combine the results.
● And yes, one might think  “well, duh! of course we 

do that — what else are we going to do?”

● But that's actually an excellent question!  Is there 
something else we could do?
– Perhaps going the other way around — could we do 

some processing first such that the elements end up in a 
way that when we recursively sort each half we're done?



  

Quick sort

● Let's reformulate that question:
● Suppose that I give you sequence A and 

sequence B, one after the other one, as shown 
below:

a1,a2, ⋯ , an−1 , an⏟
Sequence A

b1,b2, ⋯ , bn−1 ,bn⏟
Sequence B



  

Quick sort

● Let's reformulate that question:
● Suppose that I give you sequence A and 

sequence B, one after the other one, as shown 
below:

● And suppose I told you that if we sort sequence 
A and sort sequence B, then the complete 
sequence will be sorted — what does that tell 
you about the values in both sequences?

a1,a2, ⋯ , an−1 , an⏟
Sequence A

b1,b2, ⋯ , bn−1 ,bn⏟
Sequence B



  

Quick sort

● This is the central aspect behind quicksort's 
idea/functionality:



  

Quick sort

● This is the central aspect behind quicksort's 
idea/functionality:
● If every value in sequence A is less than every 

value in sequence B, then when we (recursively) 
sort each sequence, we would be done  (that is, the 
entire sequence would be sorted)



  

Quick sort

● Let's try the following  (hopefully in linear time):
● Back to sequences A and B from earlier, we'll take a 

value (say, 45) to compare — if a value from 
sequence A is > 45, then it should be moved to B, 
and if a value from sequence B is < 45, then it 
should be moved to A.



  

Quick sort

● Let's try the following  (hopefully in linear time):
● Back to sequences A and B from earlier, we'll take a 

value (say, 45) to compare — if a value from 
sequence A is > 45, then it should be moved to B, 
and if a value from sequence B is < 45, then it 
should be moved to A.

● We can definitely do this in linear time — scan each 
of the arrays for elements matching the condition, 
then swap them!



  

Quick sort

● Partitioning process:

Sequence A:  40, 23, 11, 93, 68, 57

Sequence B:  46,   5, 96, 79, 16, 35
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● Partitioning process:
● Look for a value > 45 in A, and a value < 45 in B:

Sequence A:  40, 23, 11, 93, 68, 57

Sequence B:  46,   5, 96, 79, 16, 35



  

Quick sort

● Partitioning process:
● Look for a value > 45 in A, and a value < 45 in B:

– Then swap them

Sequence A:  40, 23, 11, 93, 68, 57

Sequence B:  46,   5, 96, 79, 16, 35



  

Quick sort

● Partitioning process:
● Look for a value > 45 in A, and a value < 45 in B:

– Then swap them

Sequence A:  40, 23, 11,   5, 68, 57

Sequence B:  46, 93, 96, 79, 16, 35



  

Quick sort

● Partitioning process:
● Next...

Sequence A:  40, 23, 11,   5, 68, 57

Sequence B:  46, 93, 96, 79, 16, 35



  

Quick sort

● Partitioning process:
● Next...

Sequence A:  40, 23, 11,   5, 68, 57

Sequence B:  46, 93, 96, 79, 16, 35



  

Quick sort

● Partitioning process:
● Next...  then swap them

Sequence A:  40, 23, 11,   5, 68, 57

Sequence B:  46, 93, 96, 79, 16, 35



  

Quick sort

● Partitioning process:
● Next...  then swap them

Sequence A:  40, 23, 11,   5, 16, 57

Sequence B:  46, 93, 96, 79, 68, 35



  

Quick sort

● Partitioning process:
● Next...  

Sequence A:  40, 23, 11,   5, 16, 57

Sequence B:  46, 93, 96, 79, 68, 35



  

Quick sort

● Partitioning process:
● Next...  then swap them

Sequence A:  40, 23, 11,   5, 16, 35

Sequence B:  46, 93, 96, 79, 68, 57



  

Quick sort

● Partitioning process:
● Done!  Now every value in sequence A is less than 

every value in sequence B  (we now sort A, then 
sort B, and then sorting of the whole sequence is 
completed!)

Sequence A:  40, 23, 11,   5, 16, 35

Sequence B:  46, 93, 96, 79, 68, 57



  

Quick sort

● Anyone sees the severe flaw with this 
example?

Sequence A:  40, 23, 11,   5, 16, 35

Sequence B:  46, 93, 96, 79, 68, 57



  

Quick sort

● How did (or how could) we know that we had to 
compare against 45 to swap?



  

Quick sort

● How did (or how could) we know that we had to 
compare against 45 to swap?

● Or equivalently, once picked a value, how do 
we know that we have room enough in 
sequence A for all elements < the value and in 
sequence B for all elements > the value?



  

Quick sort

● How did (or how could) we know that we had to 
compare against 45 to swap?

● Or equivalently, once picked a value, how do 
we know that we have room enough in 
sequence A for all elements < the value and in 
sequence B for all elements > the value?
● The answer is:  we don't know that we'll have 

enough room — because we won't have enough 
room in general.



  

Quick sort

● If we had chosen, say, 20, then we would have 
had 3 values that had to go in sequence A, and 
9 values in sequence B
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● If we had chosen, say, 20, then we would have 
had 3 values that had to go in sequence A, and 
9 values in sequence B
● Ermm...  wait!  Why is that a problem??



  

Quick sort

● If we had chosen, say, 20, then we would have 
had 3 values that had to go in sequence A, and 
9 values in sequence B
● Ermm...  wait!  Why is that a problem??
● Could we not just recursively sort the 3-element 

sequence, then sort the 9-element sequence?



  

Quick sort

● We have two obstacles if we do that:
● If we pick some value without knowing the sizes of 

the two resulting subsequences, how do we know 
where to swap?



  

Quick sort

● We have two obstacles if we do that:
● If we pick some value without knowing the sizes of 

the two resulting subsequences, how do we know 
where to swap?   (we'll see in a minute that this one 
can be addressed rather easily)



  

Quick sort

● We have two obstacles if we do that:
● If we pick some value without knowing the sizes of 

the two resulting subsequences, how do we know 
where to swap?   (we'll see in a minute that this one 
can be addressed rather easily)

● The other problem is:  don't we need to partition into 
two equal size chunks to obtain Θ(n log n) run time?



  

Quick sort

● The answer is, no — with partitions of unequal 
size, we still obtain Θ(n log n), just with a larger 
proportionality constant  (so, it is slower — just 
not in terms of asymptotic notation)



  

Quick sort

● The answer is, no — with partitions of unequal 
size, we still obtain Θ(n log n), just with a larger 
proportionality constant  (so, it is slower — just 
not in terms of asymptotic notation)
● Provided that the sizes of the partition are 

proportional to n — that is, so long as the partitions 
have sizes  an and (1−a)n.



  

Quick sort

● The answer is, no — with partitions of unequal 
size, we still obtain Θ(n log n), just with a larger 
proportionality constant  (so, it is slower — just 
not in terms of asymptotic notation)
● Provided that the sizes of the partition are 

proportional to n — that is, so long as the partitions 
have sizes  an and (1−a)n.

● What if they don't?  In particular, what if the 
partitions, for some unlucky coincidence, always 
end up being size 1 and size n−1 ??



  

Quick sort

● In fact, if we're doing a worst-case run time 
analysis, we would have to consider this 
outcome — partitions are always 1 and n−1.



  

Quick sort

● In fact, if we're doing a worst-case run time 
analysis, we would have to consider this 
outcome — partitions are always 1 and n−1.
● What's the run time of this?



  

Quick sort

● In fact, if we're doing a worst-case run time 
analysis, we would have to consider this 
outcome — partitions are always 1 and n−1.
● What's the run time of this?
● Again we recognize the arithmetic sum — a sort of 

size n leads to one of size n−1, plus one of size 
n−2, plus · · ·  all the way down to 1.

● And this is Θ(n²)



  

Quick sort

● So, perhaps the more interesting question is:
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● So, perhaps the more interesting question is:
● Why on earth are we talking about this algorithm, 

that we're seeing has quadratic run time ??!!!
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that we're seeing has quadratic run time ??!!!
● Let's say that this is definitely one of the remarkable 

aspects of this algorithm:  it does have worst-case 
run time Θ(n²), but:
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● So, perhaps the more interesting question is:
● Why on earth are we talking about this algorithm, 

that we're seeing has quadratic run time ??!!!
● Let's say that this is definitely one of the remarkable 

aspects of this algorithm:  it does have worst-case 
run time Θ(n²), but:
– On average, quick sort outperforms every other sorting 

algorithm known!



  

Quick sort

● So, perhaps the more interesting question is:
● Why on earth are we talking about this algorithm, 

that we're seeing has quadratic run time ??!!!
● Let's say that this is definitely one of the remarkable 

aspects of this algorithm:  it does have worst-case 
run time Θ(n²), but:
– On average, quick sort outperforms every other sorting 

algorithm known!
– Equally (or more) importantly:  if implemented properly, 

we can ensure the chances of hitting the worst-case to 
be essentially negligible.



  

Quick sort

● Just one more detail before we're ready to see 
quick sort in action!

● Let's look at the notion of the median of a set of 
values.



  

Quick sort

● Just one more detail before we're ready to see 
quick sort in action!

● Let's look at the notion of the median of a set of 
values.
● The median is a statistical measure of a set of 

values, somewhat similar to the mean, or average, 
but quite interesting:

● Given a set of values                                    the 
median is one of the values in the sequence,      , 
such that there are as many elements            as 
there are elements  

{x1, x2, ⋯ , xn−1 , xn}
xm

x i<xm
x k>xm



  

Quick sort

● Visually, this notion of the median corresponds 
to the following:  place the elements in order;  
then, pick the middle element.



  

Quick sort

● Visually, this notion of the median corresponds 
to the following:  place the elements in order;  
then, pick the middle element.

● The problem is, algorithms to find the median 
are not very efficient — in many cases, one 
simply sorts and then picks the middle element.
● So, if we're needing the median as part of a sorting 

procedure, we're kind of stuck, like a dog chasing 
its tail !!



  

Quick sort

● What about an approximation of the median??
● Something that, on average, is close to the median.
● As it turns out, this is quite useful for quicksort !!



  

Quick sort

● Let's do the following experiment:
● We'll work in groups of three or four;  you'll shuffle a 

quarter of a deck of cards, with values from 1 to 13 
(obviously, we associate A ↔ 1, J ↔ 11, Q ↔ 12, 
and K ↔ 13)

● Now, pick the first, last, and middle cards, and you'll 
write down the median of those three cards  (for 
example, if you get 8, 3, and Q, the median is 8)



  

Quick sort

● At the time that I'm writing this, I don't have the 
results of the experiment, but it will most likely 
be something in the range of an average of 2 or 
3 of deviation with respect to the true median 
(which is 7 in this case).
● That means that on average, we're splitting the 

range into 65% − 35% chunks;  not too bad in terms 
of the performance that we get.
– We want something that is as close as possible to the 

actual median, so that the partition is as close as possible 
to 50%  − 50% ....  But we also want something that is 
efficient!



  

Quick sort

● Side note — as we all saw during class, the 
average deviation was 2.11
● Indeed, something close to a 65% − 35% 

partitioning on average.



  

Quick sort

● We're ready to see quick sort in action!
● Given the sequence of n elements, we choose, 

using perhaps the median of three, the element 
called the pivot.  (the value that will be used to 
compare and determine when to swap values)
– Thus, the value that will determine the resulting partition.



  

Quick sort

● We're ready to see quick sort in action!
● Given the sequence of n elements, we choose, 

using perhaps the median of three, the element 
called the pivot.  (the value that will be used to 
compare and determine when to swap values)
– Thus, the value that will determine the resulting partition.

● Then, we start at the beginning looking for values 
that should go to the second chunk, and at the end 
looking for values that should go to the first chunk, 
and we swap when we find them.



  

Quick sort

● Consider the following array, and inspect the 
first, middle, and last elements:



  

Quick sort

● We select 57 (the median of {57,81,34}) as the 
pivot:
● We send the lower value to the beginning, and 

leave the pivot out of this for the moment...



  

Quick sort

● Now we start scanning from the second 
location looking for values > 57, and from the 
second-to-last, searching backwards for values 
< 57



  

Quick sort

● We find:
● 70 > 57, and
● 49 < 57



  

Quick sort

● So we swap them:



  

Quick sort

● Then we scan forward until we find  97 > 57 
and search backward until we find 16 < 57



  

Quick sort

● So we swap them.



  

Quick sort

● Then continue ... 



  

Quick sort

● Then continue ... 
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● Then continue ... 
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● Then continue ... 
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● Then continue ... 



  

Quick sort

● Then continue ... 



  

Quick sort

● We search forward until finding 76 > 57 and 
search backward until we find 9 < 57
● But now the indices are reversed, so that means 

that we completed the loop  (i.e., indices in the 
wrong order is the stop condition for the loop). 



  

Quick sort

● We move the element at the larger index to the 
end, and place the pivot at the empty location in 
the middle.



  

Quick sort

● Now the pivot, 57, is at the right position, and 
everything before that position it is less than 57, 
and everything after that position is greater than 
57.



  

Quick sort

● Now the pivot, 57, is at the right position, and 
everything before that position it is less than 57, 
and everything after that position is greater than 
57.
● If we now (recursively) sort the first chunk, then the 

second chunk, we end up with a sorted array!



  

Quick sort

● For the first chunk (elements before 57, not 
including it), things would go like this:
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● For the first chunk (elements before 57, not 
including it), things would go like this:
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● For the first chunk (elements before 57, not 
including it), things would go like this:



  

Quick sort

● For the first chunk (elements before 57, not 
including it), things would go like this:



  

Quick sort

● For the first chunk (elements before 57, not 
including it), things would go like this:
● Indices are reversed, so we're done with this loop.



  

Quick sort

● For the first chunk (elements before 57, not 
including it), things would go like this:
● Send 38 (the element at the larger index) to the last 

position, and the pivot, 24, to the middle position.



  

Quick sort

● Etc.



  

Quick sort

● Not much of a plot twist this time  (Heap sort 
did it !),  when we narrow down the chunk to a 
small size, then we use insertion sort, instead 
of recursively calling quick sort  (for small 
enough sizes, insertion sort is faster!)



  

Quick sort

● If this example didn't clarify things enough, you 
may want to look at this video clip of Quick sort 
with Hungarian folk dance:

http://www.youtube.com/watch?v=ywWBy6J5gz8

http://www.youtube.com/watch?v=ywWBy6J5gz8


  

Summary

● During today's class:
● Introduced quick sort
● Discussed the basic idea behind the algorithm and 

its run time.
– Investigated the average-case vs. worst-case issue. 
– Discussed strategies to avoid the worst-case

● Looked at an example of operation.
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