

Graphs

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Graphs

Standard reminder to set phones to
silent/vibrate mode, please!

Graphs

● So far, in ECE-250 ...
● We've looked at algorithms, analysis, and some

sorting algorithms.
● Looked at data relationships and how they affect

the choice of data structures.
– Saw some of the sequential structures, for storing linearly

ordered data (arrays, linked lists, queues, stacks)
– Hash tables for unordered data (e.g., sets, in the strict

mathematical sense of a set)
– Trees, for hierarchical data (plus some other interesting

applications deriving from their structure)

Graphs

● Today ...
● We start with Graphs, the data structure for data

featuring adjacency relationships.
● We'll look into the basic notions and introductory

concepts.
● Discuss the main types of graphs (directed vs.

undirected; weighted vs. unweighted, connected,
complete, etc.)

● Talk about some graph algorithms and their
applications.

Graphs

● Basic definition:
● A graph is defined as a set of vertices together with

a set of edges representing association or
adjacency between the vertices.

Graphs

● Basic definition:
● A graph is defined as a set of vertices together with

a set of edges representing association or
adjacency between the vertices.

● Notation:
● A graph consists of the set of vertices

 and the set of edges E,
where each edge is a pair , with

G = (V , E)
V = {v1, v2, ⋯ , vn−1 , vn}

(v i , v j) v i , v j ∈ V

Graphs

● Basic definition:
● A graph is defined as a set of vertices together with

a set of edges representing association or
adjacency between the vertices.

● Notation:
● A graph consists of the set of vertices

 and the set of edges E,
where each edge is a pair , with

● The number of vertices (in this case, n) is usually
denoted , and the number of edges

G = (V , E)
V = {v1, v2, ⋯ , vn−1 , vn}

(v i , v j) v i , v j ∈ V

∣V∣ ∣E∣

Graphs

● Graphically, we could represent it like this (this
is an example of a graph with :∣V∣= 9

Graphs

● Since the vertices usually represent some
element (not unlike nodes in a tree), it is
common practice to draw them as circles
containing a value.

Graphs

● Since the vertices usually represent some
element (not unlike nodes in a tree), it is
common practice to draw them as circles
containing a value.
● So, in a sense (at least from a “visual analogy” point

of view) a graph ends up being like a “generalized”
or “extended” version of a tree.

Graphs

● More definitions — directed and undirected
graphs:
● A directed graph is one where edges are ordered

pairs , where is adjacent to (v i , v j) v j v i

Graphs

● More definitions — directed and undirected
graphs:
● A directed graph is one where edges are ordered

pairs , where is adjacent to

● Visually, edges are represented with arrows,
denoting a direction in the adjacency relationship
(arrow going from to).

(v i , v j) v j v i

v i v j

Graphs

● More definitions — directed and undirected
graphs:
● An undirected graph is one where edges are

unordered pairs , where both is adjacent
to , and is adjacent to

(v i , v j)
v j

v i
v j v i

Graphs

● More definitions — directed and undirected
graphs:
● An undirected graph is one where edges are

unordered pairs , where both is adjacent
to , and is adjacent to

● In this case, edges are represented as lines
connecting the two vertices.

(v i , v j)
v j

v i
v j v i

Graphs

● Standard assumption:
● A vertex is never adjacent to itself — that is, the set

of edges shall never contain (v k , v k)

Graphs

● Maximum number of edges in an undirected
graph with n vertices:

Graphs

● Maximum number of edges in an undirected
graph with n vertices:

Graphs

● Maximum number of edges in an undirected
graph with n vertices:

● Thus, maximum number of edges in a directed
graph is:

(n2) =
n(n−1)

2

Graphs

● Maximum number of edges in an undirected
graph with n vertices:

● Thus, maximum number of edges in a directed
graph is: twice as many — n(n−1)

(n2) =
n(n−1)

2

Graphs

● The degree of a vertex (in an undirected graph)
is defined as the number of adjacent vertices.
● In the example below, the degree of each vertex is

shown in red, next to the vertex:

Graphs

● What about for directed graphs? How do we
define this “degree” notion for a directed graph?

Graphs

● What about for directed graphs? How do we
define this “degree” notion for a directed graph?
● There are the notions of in degree and out degree;

visually, the in degree of a vertex corresponds to
the number of arrows pointing to that vertex, and
the out degree corresponds to the number of
arrows starting at the vertex.

Graphs

● What about for directed graphs? How do we
define this “degree” notion for a directed graph?
● There are the notions of in degree and out degree;

visually, the in degree of a vertex corresponds to
the number of arrows pointing to that vertex, and
the out degree corresponds to the number of
arrows starting at the vertex.

● Formally:
– Out-degree of a vertex: number of vertices which are

adjacent to the given vertex.
– In-degree of a vertex: number of vertices which the given

vertex is adjacent to.

Graphs

● Example: in/out degrees shown:

5

Graphs

● Definition: A path is an ordered sequence of
vertices

where

(v0, v1, v2 , ⋯ v k−1 , vk)

(v i−1 , v i) ∈ E ∀ i , 1⩽i⩽k

Graphs

● Definition: A path is an ordered sequence of
vertices

where

● This is a path from to
● The length of this path is k

(v0, v1, v2 , ⋯ v k−1 , vk)

(v i−1 , v i) ∈ E ∀ i , 1⩽i⩽k

v0 v k

Graphs

● Definition: A path is an ordered sequence of
vertices

where

● This is a path from to
● The length of this path is k

● Notion similar than with a path in a tree.
● Important distinction: in this case, we're

unrestricted in direction and the sequence of
vertices.

(v0, v1, v2 , ⋯ v k−1 , vk)

(v i−1 , v i) ∈ E ∀ i , 1⩽i⩽k

v0 v k

Graphs

● Example:
● Consider a graph where vertices represent an

actor/actress, and edges represent associations
between actors/actresses that have shared roles in
the same movie.

Graphs

● Example:
● Consider a graph where vertices represent an

actor/actress, and edges represent associations
between actors/actresses that have shared roles in
the same movie.

● Then, the length of the path from Kevin Bacon to
any other vertex is claimed to be less than 6 !!

Graphs

● Example:
● Here's Kevin Bacon himself explaining this

important concept from graph theory:

Graphs

● Examples of paths:
● (1, 2, 3, 3, 6, 7, 5)

Graphs

● Examples of paths:
● (1, 2, 3, 3, 6, 7, 5)

● (1, 4, 2, 4, 3, 4, 5, 4, 6, 4, 7)

Graphs

● A perhaps curious example of a path:

● (1)

Graphs

● A simple path is one that has no repeated
vertices other than possibly the first and last.

Graphs

● A simple path is one that has no repeated
vertices other than possibly the first and last.

● Example of a simple path:

Graphs

● A cycle is a non-trivial simple path where the
first and last vertices are the same vertex.

Graphs

● A cycle is a non-trivial simple path where the
first and last vertices are the same vertex.

● Example of a cycle:
● (2, 4, 1, 2)

Graphs

● There are some fascinating theoretical aspects
related to this. For example:
● A Hamiltonian path is a path that visits each vertex

exactly once.
● A Hamiltonian cycle is a Hamiltonian path that is a

cycle.

● An Eulerian path is a path that visits each edge
exactly once.

Graphs

● The problems of determining whether a graph
contains a Hamiltonian path, a Hamiltonian
cycle, or an Eulerian path are quite interesting
from a theoretical point of view:
● As much as they seem almost identical in terms of

difficulty, testing for an Eulerian path can be done
very efficiently.

● Testing for Hamiltonian path or cycle has been
proved to be NP-complete — a class of problems
that we'll see, are as close as we get to proving that
no efficient solution exists.

Graphs

● Definition: Two vertices v, w are connected if
there exists a path from v to w.

● A graph is connected if there exists a path
between any two vertices.

Connected Unconnected

Graphs

● Weighted graphs:
● A numeric value (denoted weight, or cost) may be

associated with each edge in a graph.
– This could represent a distance, time, energy

consumption associated with going from one vertex to
the other, etc.

Graphs

● Weighted graphs:
● A numeric value (denoted weight, or cost) may be

associated with each edge in a graph.
– This could represent a distance, time, energy

consumption associated with going from one vertex to
the other, etc.

● Example:

Graphs

● Weighted graphs:
● Observation: an unweighted graph could be seen

as a weighted graph where every edge has weight
1.

Graphs

● Weighted graphs:
● For weighted graphs, the length of a path is the

sum of the weights of all edges in the path.

Graphs

● Weighted graphs:
● For weighted graphs, the length of a path is the

sum of the weights of all edges in the path.
● Example: the length of the path (1, 4, 7) in the

graph below is 5.1 + 3.7 = 8.8

Graphs

● Weighted graphs:
● One typical application is finding directions — a

graph where vertices represent intersections and
edges represent streets.

Graphs

● Weighted graphs:
● One typical application is finding directions — a

graph where vertices represent intersections and
edges represent streets.

● Is this a directed or undirected graph?

Graphs

● Weighted graphs:
● One typical application is finding directions — a

graph where vertices represent intersections and
edges represent streets.

● Is this a directed or undirected graph?
– If we must account for one-way streets, then we have to

make it a directed graph.
● Weights could represent the estimated time

(perhaps based on traffic statistics, combined with
speed limit, etc.)

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.
● Examples:

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.
● Example of something that is not a DAG:

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.

● Hmm ... What does this sound like? (what type of
relationship could be represented here?)

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.

● Hmm ... What does this sound like? (what type of
relationship could be represented here?)
– In general, we're talking about a partial ordering.
– Specific examples include course prerequisite diagrams,

compiler optimization diagrams for code dependencies.

Graphs

● In the next few lessons, we'll look at some of
the algorithms to solve particular problems with
graphs (notably, shortest path, minimum
spanning tree, topological sort).

Graphs

● In the next few lessons, we'll look at some of
the algorithms to solve particular problems with
graphs (notably, shortest path, minimum
spanning tree, topological sort).

Summary

● During today's lesson, we:
● Introduced Graphs — data structure for storing data

featuring adjacency relationships.
● Saw some of the basic notions.
● Discussed the main types of graphs (directed vs.

undirected; weighted vs. unweighted, connected,
complete, etc.)

● Mentioned some graph algorithms and their
applications.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

