

Carlos Moreno cmoreno@uwaterloo.ca EIT-4103

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

https://ece.uwaterloo.ca/~cmoreno/ece250

These slides, the course material, and course web site are based on work by Douglas W. Harder

Standard reminder to set phones to silent/vibrate mode, please!

- So far, in ECE-250 ...
 - We've looked at algorithms, analysis, and some sorting algorithms.
 - Looked at data relationships and how they affect the choice of data structures.
 - Saw some of the sequential structures, for storing linearly ordered data (arrays, linked lists, queues, stacks)
 - Hash tables for unordered data (e.g., *sets*, in the strict mathematical sense of a set)
 - Trees, for hierarchical data (plus some other interesting applications deriving from their structure)

NIVERSITY OF NATERLOO

- Today ...
 - We start with Graphs, the data structure for data featuring *adjacency* relationships.
 - We'll look into the basic notions and introductory concepts.
 - Discuss the main types of graphs (directed vs. undirected; weighted vs. unweighted, connected, complete, etc.)
 - Talk about some graph algorithms and their applications.

• Basic definition:

UNIVERSITY OF

ATERLOO

• A *graph* is defined as a set of vertices together with a set of edges representing association or adjacency between the vertices.

- Basic definition:
 - A *graph* is defined as a set of vertices together with a set of edges representing association or adjacency between the vertices.
- Notation:

ERSITY OF

TERLOO

• A graph G = (V, E) consists of the set of vertices $V = \{v_{1,}v_{2,} \cdots, v_{n-1}, v_n\}$ and the set of edges E, where each edge is a pair (v_i, v_i) , with $v_i, v_i \in V$

- Basic definition:
 - A *graph* is defined as a set of vertices together with a set of edges representing association or adjacency between the vertices.
- Notation:
 - A graph G = (V, E) consists of the set of vertices $V = \{v_{1,}v_{2,} \cdots, v_{n-1}, v_n\}$ and the set of edges E, where each edge is a pair (v_i, v_j) , with $v_i, v_j \in V$
 - The number of vertices (in this case, n) is usually denoted |V|, and the number of edges |E|

Graphs

• Graphically, we could represent it like this (this is an example of a graph with |V| = 9:

Graphs

 Since the vertices usually represent some element (not unlike nodes in a tree), it is common practice to draw them as circles containing a value.

- Since the vertices usually represent some element (not unlike nodes in a tree), it is common practice to draw them as circles containing a value.
 - So, in a sense (at least from a "visual analogy" point of view) a graph ends up being like a "generalized" or "extended" version of a tree.

- More definitions *directed* and *undirected* graphs:
 - A *directed* graph is one where edges are *ordered* pairs (v_i, v_j) , where v_j is adjacent to v_i

- More definitions *directed* and *undirected* graphs:
 - A directed graph is one where edges are ordered pairs (v_i, v_j) , where v_j is adjacent to v_i
 - Visually, edges are represented with arrows, denoting a direction in the adjacency relationship (arrow going from v_i to v_j).

- More definitions *directed* and *undirected* graphs:
 - An undirected graph is one where edges are unordered pairs (v_i, v_j), where both v_i is adjacent to v_j, and v_j is adjacent to v_i

- More definitions *directed* and *undirected* graphs:
 - An undirected graph is one where edges are unordered pairs (v_i, v_j), where both v_i is adjacent to v_j, and v_j is adjacent to v_i
 - In this case, edges are represented as lines connecting the two vertices.

- Standard assumption:
 - A vertex is never adjacent to itself that is, the set of edges shall never contain (v_k, v_k)

Graphs

• Maximum number of edges in an undirected graph with *n* vertices:

Graphs

• Maximum number of edges in an undirected graph with *n* vertices:

VERSITY OF

ATERLOO

• Maximum number of edges in an undirected graph with *n* vertices:

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

Thus, maximum number of edges in a directed graph is:

VERSITY OF

ATERLOO

• Maximum number of edges in an undirected graph with *n* vertices:

$$\binom{n}{2} = \frac{n(n-1)}{2}$$

 Thus, maximum number of edges in a directed graph is: twice as many — n(n-1)

- The degree of a vertex (in an undirected graph) is defined as the number of adjacent vertices.
 - In the example below, the degree of each vertex is shown in red, next to the vertex:

Graphs

• What about for directed graphs? How do we define this "degree" notion for a directed graph?

- What about for directed graphs? How do we define this "degree" notion for a directed graph?
 - There are the notions of *in degree* and *out degree*; visually, the in degree of a vertex corresponds to the number of arrows pointing to that vertex, and the out degree corresponds to the number of arrows starting at the vertex.

- What about for directed graphs? How do we define this "degree" notion for a directed graph?
 - There are the notions of *in degree* and *out degree*; visually, the in degree of a vertex corresponds to the number of arrows pointing to that vertex, and the out degree corresponds to the number of arrows starting at the vertex.
 - Formally:
 - Out-degree of a vertex: number of vertices which are adjacent to the given vertex.
 - In-degree of a vertex: number of vertices which the given vertex is adjacent to.

Graphs

• Example: in/out degrees shown:

Graphs

Definition: A path is an ordered sequence of vertices (v₀, v₁, v₂, … v_{k-1}, v_k)

where $(v_{i-1}, v_i) \in E \quad \forall i, 1 \leq i \leq k$

Graphs

Definition: A path is an ordered sequence of vertices (v₀, v₁, v₂, … v_{k-1}, v_k)

where $(v_{i-1}, v_i) \in E \quad \forall i, 1 \leq i \leq k$

- This is a path from v_0 to v_k
- The length of this path is k

Graphs

Definition: A path is an ordered sequence of vertices (v₀, v₁, v₂, … v_{k-1}, v_k)

where $(v_{i-1}, v_i) \in E \quad \forall i, 1 \leq i \leq k$

- This is a path from v_0 to v_k
- The length of this path is *k*
 - Notion similar than with a path in a tree.
 - Important distinction: in this case, we're unrestricted in direction and the sequence of vertices.

• Example:

UNIVERSITY OF

ATERLOO

 Consider a graph where vertices represent an actor/actress, and edges represent associations between actors/actresses that have shared roles in the same movie.

- Example:
 - Consider a graph where vertices represent an actor/actress, and edges represent associations between actors/actresses that have shared roles in the same movie.
 - Then, the length of the path from Kevin Bacon to any other vertex is claimed to be less than 6 !!

• Example:

UNIVERSITY OF

/ATERLOO

• Here's Kevin Bacon himself explaining this important concept from graph theory:

- Examples of paths:
 - (1, 2, 3, 3, 6, 7, 5)

- Examples of paths:
 - (1, 2, 3, 3, 6, 7, 5)

UNIVERSITY OF

VATERLOO

• (1, 4, 2, 4, 3, 4, 5, 4, 6, 4, 7)

- A perhaps curious example of a path:
 - (1)

Graphs

• A *simple path* is one that has no repeated vertices other than possibly the first and last.

- A *simple path* is one that has no repeated vertices other than possibly the first and last.
- Example of a simple path:

Graphs

• A cycle is a non-trivial simple path where the first and last vertices are the same vertex.
- A cycle is a non-trivial simple path where the first and last vertices are the same vertex.
- Example of a cycle:
 - (2, 4, 1, 2)

- There are some fascinating theoretical aspects related to this. For example:
 - A Hamiltonian path is a path that visits each vertex exactly once.
 - A Hamiltonian cycle is a Hamiltonian path that is a cycle.
 - An Eulerian path is a path that visits each edge exactly once.

- The problems of determining whether a graph contains a Hamiltonian path, a Hamiltonian cycle, or an Eulerian path are quite interesting from a theoretical point of view:
 - As much as they seem almost identical in terms of difficulty, testing for an Eulerian path can be done very efficiently.
 - Testing for Hamiltonian path or cycle has been proved to be NP-complete — a class of problems that we'll see, are as close as we get to proving that no efficient solution exists.

- Definition: Two vertices *v*, *w* are connected if there exists a path from *v* to *w*.
- A graph is connected if there exists a path between any two vertices.

• Weighted graphs:

UNIVERSITY OF

- A numeric value (denoted *weight*, or *cost*) may be associated with each edge in a graph.
 - This could represent a distance, time, energy consumption associated with going from one vertex to the other, etc.

• Weighted graphs:

VERSITY OF

- A numeric value (denoted *weight*, or *cost*) may be associated with each edge in a graph.
 - This could represent a distance, time, energy consumption associated with going from one vertex to the other, etc.
- Example:

- Weighted graphs:
 - Observation: an unweighted graph could be seen as a weighted graph where every edge has weight 1.

- Weighted graphs:
 - For weighted graphs, the length of a path is the sum of the weights of all edges in the path.

• Weighted graphs:

VERSITY OF

- For weighted graphs, the length of a path is the sum of the weights of all edges in the path.
- Example: the length of the path (1, 4, 7) in the graph below is 5.1 + 3.7 = 8.8

• Weighted graphs:

UNIVERSITY OF

ATERLOO

 One typical application is finding directions — a graph where vertices represent intersections and edges represent streets.

• Weighted graphs:

UNIVERSITY OF

- One typical application is finding directions a graph where vertices represent intersections and edges represent streets.
- Is this a directed or undirected graph?

• Weighted graphs:

VERSITY OF

- One typical application is finding directions a graph where vertices represent intersections and edges represent streets.
- Is this a directed or undirected graph?
 - If we must account for one-way streets, then we have to make it a directed graph.
- Weights could represent the estimated time (perhaps based on traffic statistics, combined with speed limit, etc.)

- Directed Acyclic Graphs (DAGs):
 - A directed graph that has no cycles.
 - Examples:

- Directed Acyclic Graphs (DAGs):
 - A directed graph that has no cycles.
 - Example of something that is *not* a DAG:

- Directed Acyclic Graphs (DAGs):
 - A directed graph that has no cycles.
 - Hmm ... What does this sound like? (what type of relationship could be represented here?)

- Directed Acyclic Graphs (DAGs):
 - A directed graph that has no cycles.
 - Hmm ... What does this sound like? (what type of relationship could be represented here?)
 - In general, we're talking about a *partial ordering*.
 - Specific examples include course prerequisite diagrams, compiler optimization diagrams for code dependencies.

UNIVERSITY OF

Graphs

 In the next few lessons, we'll look at some of the algorithms to solve particular problems with graphs (notably, shortest path, minimum spanning tree, topological sort).

UNIVERSITY OF

Graphs

 In the next few lessons, we'll look at some of the algorithms to solve particular problems with graphs (notably, shortest path, minimum spanning tree, topological sort).

Summary

- During today's lesson, we:
 - Introduced Graphs data structure for storing data featuring adjacency relationships.
 - Saw some of the basic notions.
 - Discussed the main types of graphs (directed vs. undirected; weighted vs. unweighted, connected, complete, etc.)
 - Mentioned some graph algorithms and their applications.