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Graphs

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Graphs

● So far, in ECE-250 ... 
● We've looked at algorithms, analysis, and some 

sorting algorithms.
● Looked at data relationships and how they affect 

the choice of data structures.
– Saw some of the sequential structures, for storing linearly 

ordered data  (arrays, linked lists, queues, stacks)
– Hash tables for unordered data (e.g., sets, in the strict 

mathematical sense of a set)
– Trees, for hierarchical data  (plus some other interesting 

applications deriving from their structure)



  

Graphs

● Today ... 
● We start with Graphs, the data structure for data 

featuring adjacency relationships.
● We'll look into the basic notions and introductory 

concepts.
● Discuss the main types of graphs  (directed vs. 

undirected; weighted vs. unweighted, connected, 
complete, etc.)

● Talk about some graph algorithms and their 
applications.



  

Graphs

● Basic definition:
● A graph is defined as a set of vertices together with 

a set of edges representing association or 
adjacency between the vertices.



  

Graphs

● Basic definition:
● A graph is defined as a set of vertices together with 

a set of edges representing association or 
adjacency between the vertices.

● Notation:
● A graph                      consists of the set of vertices   

                                     and the set of edges E, 
where each edge is a pair             , with 

G = (V , E )
V = {v1, v2, ⋯ , vn−1 , vn}

(v i , v j) v i , v j ∈ V



  

Graphs

● Basic definition:
● A graph is defined as a set of vertices together with 

a set of edges representing association or 
adjacency between the vertices.

● Notation:
● A graph                      consists of the set of vertices   

                                     and the set of edges E, 
where each edge is a pair             , with 

● The number of vertices (in this case, n) is usually 
denoted      , and the number of edges 

G = (V , E )
V = {v1, v2, ⋯ , vn−1 , vn}

(v i , v j) v i , v j ∈ V

∣V∣ ∣E∣



  

Graphs

● Graphically, we could represent it like this  (this 
is an example of a graph with           :∣V∣= 9



  

Graphs

● Since the vertices usually represent some 
element (not unlike nodes in a tree), it is 
common practice to draw them as circles 
containing a value.



  

Graphs

● Since the vertices usually represent some 
element (not unlike nodes in a tree), it is 
common practice to draw them as circles 
containing a value.
● So, in a sense (at least from a “visual analogy” point 

of view) a graph ends up being like a “generalized” 
or “extended” version of a tree.



  

Graphs

● More definitions — directed and undirected 
graphs:
● A directed graph is one where edges are ordered 

pairs            , where      is adjacent to (v i , v j) v j v i



  

Graphs

● More definitions — directed and undirected 
graphs:
● A directed graph is one where edges are ordered 

pairs            , where      is adjacent to 

● Visually, edges are represented with arrows, 
denoting a direction in the adjacency relationship  
(arrow going from     to     ).

(v i , v j) v j v i

v i v j



  

Graphs

● More definitions — directed and undirected 
graphs:
● An undirected graph is one where edges are 

unordered pairs            , where both     is adjacent 
to     , and      is adjacent to

(v i , v j)
v j

v i
v j v i



  

Graphs

● More definitions — directed and undirected 
graphs:
● An undirected graph is one where edges are 

unordered pairs            , where both     is adjacent 
to     , and      is adjacent to

● In this case, edges are represented as lines 
connecting the two vertices.

(v i , v j)
v j

v i
v j v i



  

Graphs

● Standard assumption:
● A vertex is never adjacent to itself — that is, the set 

of edges shall never contain (v k , v k )



  

Graphs

● Maximum number of edges in an undirected 
graph with n vertices:



  

Graphs

● Maximum number of edges in an undirected 
graph with n vertices:



  

Graphs

● Maximum number of edges in an undirected 
graph with n vertices:

● Thus, maximum number of edges in a directed 
graph is:

(n2 ) =
n(n−1)

2



  

Graphs

● Maximum number of edges in an undirected 
graph with n vertices:

● Thus, maximum number of edges in a directed 
graph is:  twice as many — n(n−1)

(n2 ) =
n(n−1)

2



  

Graphs

● The degree of a vertex (in an undirected graph) 
is defined as the number of adjacent vertices.
● In the example below, the degree of each vertex is 

shown in red, next to the vertex:



  

Graphs

● What about for directed graphs?  How do we 
define this “degree” notion for a directed graph?



  

Graphs

● What about for directed graphs?  How do we 
define this “degree” notion for a directed graph?
● There are the notions of in degree and out degree;  

visually, the in degree of a vertex corresponds to 
the number of arrows pointing to that vertex, and 
the out degree corresponds to the number of 
arrows starting at the vertex.



  

Graphs

● What about for directed graphs?  How do we 
define this “degree” notion for a directed graph?
● There are the notions of in degree and out degree;  

visually, the in degree of a vertex corresponds to 
the number of arrows pointing to that vertex, and 
the out degree corresponds to the number of 
arrows starting at the vertex.

● Formally:
– Out-degree of a vertex:  number of vertices which are 

adjacent to the given vertex.
– In-degree of a vertex:  number of vertices which the given 

vertex is adjacent to.



  

Graphs

● Example:  in/out degrees shown:

5



  

Graphs

● Definition:  A path is an ordered sequence of 
vertices

where 

(v0, v1, v2 , ⋯ v k−1 , vk)

(v i−1 , v i) ∈ E ∀ i , 1⩽i⩽k



  

Graphs

● Definition:  A path is an ordered sequence of 
vertices

where 

● This is a path from     to  
● The length of this path is k

(v0, v1, v2 , ⋯ v k−1 , vk)

(v i−1 , v i) ∈ E ∀ i , 1⩽i⩽k

v0 v k



  

Graphs

● Definition:  A path is an ordered sequence of 
vertices

where 

● This is a path from     to  
● The length of this path is k

● Notion similar than with a path in a tree.
● Important distinction:  in this case, we're 

unrestricted in direction and the sequence of 
vertices.

(v0, v1, v2 , ⋯ v k−1 , vk)

(v i−1 , v i) ∈ E ∀ i , 1⩽i⩽k

v0 v k



  

Graphs

● Example:
● Consider a graph where vertices represent an 

actor/actress, and edges represent associations 
between actors/actresses that have shared roles in 
the same movie.



  

Graphs

● Example:
● Consider a graph where vertices represent an 

actor/actress, and edges represent associations 
between actors/actresses that have shared roles in 
the same movie.

● Then, the length of the path from Kevin Bacon to 
any other vertex is claimed to be less than 6 !!



  

Graphs

● Example:
● Here's Kevin Bacon himself explaining this 

important concept from graph theory:



  

Graphs

● Examples of paths:
● (1, 2, 3, 3, 6, 7, 5)



  

Graphs

● Examples of paths:
● (1, 2, 3, 3, 6, 7, 5)

● (1, 4, 2, 4, 3, 4, 5, 4, 6, 4, 7)



  

Graphs

● A perhaps curious example of a path:

● (1)



  

Graphs

● A simple path is one that has no repeated 
vertices other than possibly the first and last.



  

Graphs

● A simple path is one that has no repeated 
vertices other than possibly the first and last.

● Example of a simple path:



  

Graphs

● A cycle is a non-trivial simple path where the 
first and last vertices are the same vertex.



  

Graphs

● A cycle is a non-trivial simple path where the 
first and last vertices are the same vertex.

● Example of a cycle:
● (2, 4, 1, 2)



  

Graphs

● There are some fascinating theoretical aspects 
related to this.  For example:
● A Hamiltonian path is a path that visits each vertex 

exactly once.
● A Hamiltonian cycle is a Hamiltonian path that is a 

cycle.

● An Eulerian path is a path that visits each edge 
exactly once.



  

Graphs

● The problems of determining whether a graph 
contains a Hamiltonian path, a Hamiltonian 
cycle, or an Eulerian path are quite interesting 
from a theoretical point of view:
● As much as they seem almost identical in terms of 

difficulty, testing for an Eulerian path can be done 
very efficiently.

● Testing for Hamiltonian path or cycle has been 
proved to be NP-complete — a class of problems 
that we'll see, are as close as we get to proving that 
no efficient solution exists.



  

Graphs

● Definition:  Two vertices v, w are connected if 
there exists a path from v to w.

● A graph is connected if there exists a path 
between any two vertices.

Connected Unconnected



  

Graphs

● Weighted graphs:
● A numeric value (denoted weight, or cost) may be 

associated with each edge in a graph.
– This could represent a distance, time, energy 

consumption associated with going from one vertex to 
the other, etc.



  

Graphs

● Weighted graphs:
● A numeric value (denoted weight, or cost) may be 

associated with each edge in a graph.
– This could represent a distance, time, energy 

consumption associated with going from one vertex to 
the other, etc.

● Example:



  

Graphs

● Weighted graphs:
● Observation:  an unweighted graph could be seen 

as a weighted graph where every edge has weight 
1.



  

Graphs

● Weighted graphs:
● For weighted graphs, the length of a path is the 

sum of the weights of all edges in the path.



  

Graphs

● Weighted graphs:
● For weighted graphs, the length of a path is the 

sum of the weights of all edges in the path.
● Example:  the length of the path (1, 4, 7) in the 

graph below is  5.1 + 3.7 = 8.8



  

Graphs

● Weighted graphs:
● One typical application is finding directions — a 

graph where vertices represent intersections and 
edges represent streets.



  

Graphs

● Weighted graphs:
● One typical application is finding directions — a 

graph where vertices represent intersections and 
edges represent streets.

● Is this a directed or undirected graph?



  

Graphs

● Weighted graphs:
● One typical application is finding directions — a 

graph where vertices represent intersections and 
edges represent streets.

● Is this a directed or undirected graph?
– If we must account for one-way streets, then we have to 

make it a directed graph.
● Weights could represent the estimated time  

(perhaps based on traffic statistics, combined with 
speed limit, etc.)



  

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.
● Examples:



  

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.
● Example of something that is not a DAG:



  

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.

● Hmm ...  What does this sound like?  (what type of 
relationship could be represented here?)



  

Graphs

● Directed Acyclic Graphs (DAGs):
● A directed graph that has no cycles.

● Hmm ...  What does this sound like?  (what type of 
relationship could be represented here?)
– In general, we're talking about a partial ordering.
– Specific examples include course prerequisite diagrams, 

compiler optimization diagrams for code dependencies.



  

Graphs

● In the next few lessons, we'll look at some of 
the algorithms to solve particular problems with 
graphs  (notably, shortest path, minimum 
spanning tree, topological sort).



  

Graphs

● In the next few lessons, we'll look at some of 
the algorithms to solve particular problems with 
graphs  (notably, shortest path, minimum 
spanning tree, topological sort).



  

Summary

● During today's lesson, we:
● Introduced Graphs — data structure for storing data 

featuring adjacency relationships.
● Saw some of the basic notions.
● Discussed the main types of graphs  (directed vs. 

undirected; weighted vs. unweighted, connected, 
complete, etc.)

● Mentioned some graph algorithms and their 
applications.
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