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Topological sort

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Topological sort

● During today's class, we will:
● Look at Topological sort, a common and useful 

operation with Directed Acyclic Graphs (DAGs)
● Discuss an algorithm to implement this operation.
● Briefly talk about some of its applications.



  

Topological sort

● The basic idea of a topological sort is the 
following:
● Given a DAG, in which we could see adjacencies 

as representing a pre-requisite task, we want to 
place the vertices in sequence.

● The sequence must be one in which all 
dependencies on pre-requisites are satisfied.

● Such a sequential arrangement of the vertices is 
called a topological sort of the DAG.



  

Topological sort

● A simple and obvious application is:
● We have a DAG where vertices are tasks that we 

want to perform  (e.g., part of a compiler's code 
generation subsystem).

● We need to execute all the tasks, but we can only 
do one at a time.

● A topological sort gives a valid sequence of 
executed tasks — no task can proceed until all 
pre requisite tasks have completed.‑



  

Topological sort

● Formally, we would define a topological sort as 
follows:
● Let                   be a DAG, with G = (V , E ) V = {v1 , v2 , ⋯ , vn−1 , vn}



  

Topological sort

● Formally, we would define a topological sort as 
follows:
● Let                   be a DAG, with 

 

● Then, a topological sort is a sequence containing all 
the elements in V,                                    such that 
for all i, j (                  ), if there exists a path from 
     to      , then i <  j.

G = (V , E ) V = {v1 , v2 , ⋯ , vn−1 , vn}

{v k 1
, v k 2

, ⋯ , v k n−1
v k n}

0 ⩽ i , j ⩽ n
v k i v k j



  

Topological sort

● Formally, we would define a topological sort as 
follows:
● Let                   be a DAG, with 

 

● Then, a topological sort is a sequence containing all 
the elements in V,                                    such that 
for all i, j (                  ), if there exists a path from 
     to      , then i <  j.
 

– Simply put, if there is a path from vertex v to vertex w, 

then v appears before w in the output sequence.

G = (V , E ) V = {v1 , v2 , ⋯ , vn−1 , vn}

{v k 1
, v k 2

, ⋯ , v k n−1
v k n}

0 ⩽ i , j ⩽ n
v k i v k j



  

Topological sort

● Question:  why is the notion specific to DAGs?



  

Topological sort

● Question:  why is the notion specific to DAGs?
● Let's have xkcd answer that question for us, 

pointing out that cycles in dependencies can be 
problematic:



  

Topological sort

● Question:  why is the notion specific to DAGs?
● Let's have xkcd answer that question for us, 

pointing out that cycles in dependencies can be 
problematic:

http://xkcd.com/754/



  

Topological sort

● In fact, let's look at (and prove) this interesting 
fact:
● A directed graph is a DAG if and only if it has a 

topological sort.



  

Topological sort

● In fact, let's look at (and prove) this interesting 
fact:
● A directed graph is a DAG if and only if it has a 

topological sort.
● Proof:

We observe that there are two independent 
statements to prove:
– A DAG has a topological sort
– If a directed graph has a topological sort, then it is a DAG



  

Topological sort

● In fact, let's look at (and prove) this interesting 
fact:
● A directed graph is a DAG if and only if it has a 

topological sort.
● Proof:

We observe that there are two independent 
statements to prove:
– A DAG has a topological sort
– If a directed graph has a topological sort, then it is a DAG

● (this is a normal aspect of if-and-only-if statements; 
proving them is really proving two statements)



  

Topological sort

● Let's start with the easy one:
● If a graph has a topological sort, then it is a DAG.
● Proof:   (by contrapositive — that is, we prove the 

statement  “if a graph is not a DAG, it can not have 
a topological sort”)



  

Topological sort

● Let's start with the easy one:
● If a graph has a topological sort, then it is a DAG.
● Proof:   (by contrapositive — that is, we prove the 

statement  “if a graph is not a DAG, it can not have 
a topological sort”)

Assuming the graph is not a DAG means that we 
can find a cycle, say

Since there is a path from v1 to v2, then v1 must 

appear before v2 in a topological sort.

But there is also a path from v2 to v1, so v2 must 

appear before v1 in a topological sort.

{v1 , v2 , ⋯ , v k , v1}



  

Topological sort

We can not satisfy both conditions;  therefore, the 
graph can not have a topological sort.



  

Topological sort

● For the other part, we prove by induction (on 
the number of vertices) that if a graph is a DAG, 
then it has a topological sort.



  

Topological sort

● For the other part, we prove by induction (on 
the number of vertices) that if a graph is a DAG, 
then it has a topological sort.
● Base case:  A graph with one vertex is a 

DAG, and it has a topological sort.



  

Topological sort

● For the other part, we prove by induction (on 
the number of vertices) that if a graph is a DAG, 
then it has a topological sort.
● Base case:  A graph with one vertex is a 

DAG, and it has a topological sort.
● Induction hypothesis:  A DAG with n vertices 

has a topological sort.



  

Topological sort

● For the other part, we prove by induction (on 
the number of vertices) that if a graph is a DAG, 
then it has a topological sort.
● Base case:  A graph with one vertex is a 

DAG, and it has a topological sort.
● Induction hypothesis:  A DAG with n vertices 

has a topological sort.
● For the induction step, we must show that the 

induction hypothesis implies that a DAG with 
n+1 vertices must have a topological sort.



  

Topological sort

● Consider a graph with n+1 vertices.
● Such a graph must have at least one vertex v0 with 

in degree 0  (can you prove this?).‑



  

Topological sort

● Consider a graph with n+1 vertices.
● Such a graph must have at least one vertex v0 with 

in degree 0  (can you prove this?).‑
● Remove that vertex to obtain a graph with n 

vertices.
– Since the original graph had no cycles and we are 

removing edges (not adding), then the resulting graph 
must be a DAG.

– By induction hypothesis, since it is a DAG with n vertices, 
then it has a topological sort. 



  

Topological sort

● Consider a graph with n+1 vertices.
● Thus, a topological sort can be constructed for the 

n+1 vertices DAG, by prepending v0 to the 
topological sort of the n vertices DAG.‑

(we can definitely do that, since v0 has in-degree 0, 
so no path exists from any other vertex to v0, and 
this means that it can appear before any other 
vertex) 



  

Topological sort

● A somewhat more “obvious” observation:
● A topological sort is not necessarily unique.

– There's one very solid argument to this in the previous 
proof ...  anyone?



  

Topological sort

● A somewhat more “obvious” observation:
● A topological sort is not necessarily unique.

– There's one very solid argument to this in the previous 
proof ...  anyone?

– For one, there may be several vertices with in-degree 0, 
and either one of them can be the first one in a 
topological sort.



  

Topological sort

● Next, let's look at an algorithm to obtain a 
topological sort given a DAG.
● The idea is that any vertex with in-degree 0 can be 

the first one in a topological sort.
● We can look at it as follows:  each time that we 

output one of those in-degree 0 vertices, we 
remove it from the graph.
– That would in turn lead to creating additional vertices with 

in degree 0, which we can now output.‑



  

Topological sort

● An example:
● There's only one vertex with in-degree 0 (vertex 1), 

so we start with that one (and think of it as removed 
from the graph):



  

Topological sort

● An example:
● As we “remove” 1, now 2 and 3 have in-degree 0, 

so the topological sort could continue with either 
one of these — we'll choose 2:

1



  

Topological sort

● An example:
● Without 2, now 4 and 5 have in-degree 0, so the 

topological sort could continue with either 3, 4, or 
5 — we'll choose 4:

1, 2



  

Topological sort

● An example:
● We continue ... 

1, 2, 4



  

Topological sort

● An example:
● We continue ... 

1, 2, 4, 8



  

Topological sort

● An example:
● We continue ... 

1, 2, 4, 8, 5



  

Topological sort

● An example:
● We continue ... 

1, 2, 4, 8, 5, 9



  

Topological sort

● An example:
● We continue ... 

1, 2, 4, 8, 5, 9, 11



  

Topological sort

● An example:
● We continue ... 

1, 2, 4, 8, 5, 9, 11, 3



  

Topological sort

● An example:
● We continue ... 

1, 2, 4, 8, 5, 9, 11, 3 ··· etc.



  

Topological sort

● An example:
● At this point, the output is complete.

1, 2, 4, 8, 5, 9, 11, 3, 6, 10, 7, 12, 13



  

Topological sort

● The fact that a topological sort is not unique 
should have become quite clear from this 
example — anyone?



  

Topological sort

● The fact that a topological sort is not unique 
should have become quite clear from this 
example — anyone?
● At several points in the process, we had to choose 

one among several equally valid candidates;  
different choices would have produced different 
topological sorts.



  

Topological sort

● A typical implementation uses an array of 
in degrees, and optionally a queue (for ‑
efficiency)



  

Topological sort

● A typical implementation uses an array of 
in degrees, and optionally a queue (for ‑
efficiency)
● We start by initializing the table of in-degrees  (how 

do we do this efficiently?  A single pass through the 
list of vertices, perhaps?)



  

Topological sort

● A typical implementation uses an array of 
in degrees, and optionally a queue (for ‑
efficiency)
● We start by initializing the table of in-degrees  (how 

do we do this efficiently?  A single pass through the 
list of vertices, perhaps?)
– And BTW, why the big deal with doing this efficiently??  

How would we do it inefficiently?



  

Topological sort

● Obtaining the in-degrees of every vertex 
inefficiently is quite easy — for each vertex, 
determine its in-degree by visiting every other 
vertex to count how many this vertex is 
adjacent to  (quadratic run time).



  

Topological sort

● A more reasonable approach is:  initialize all 
in degrees in the array to 0.  Visit each vertex, ‑
and increase by 1 the in-degree of each of the 
vertices that are adjacent to the one being 
visited.
● What's the run time of this?



  

Topological sort

● A more reasonable approach is:  initialize all 
in degrees in the array to 0.  Visit each vertex, ‑
and increase by 1 the in-degree of each of the 
vertices that are adjacent to the one being 
visited.
● What's the run time of this?

● Would you agree if I said it is                    ?Θ(∣V∣+∣E∣)



  

Topological sort

● A more reasonable approach is:  initialize all 
in degrees in the array to 0.  Visit each vertex, ‑
and increase by 1 the in-degree of each of the 
vertices that are adjacent to the one being 
visited.
● What's the run time of this?

● Would you agree if I said it is                    ?
● In fact, we'll see that this is the run time for the 

topological sort (i.e., for the whole procedure)

Θ(∣V∣+∣E∣)



  

Topological sort

● Let's look at an example, directly from Prof. 
Harder's slides.
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49

Example

Consider the following DAG with six vertices



Topological Sort
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Example

Let us define the table of in-degrees
(or more likely, copy it)

Vertex In-
degree

1 0

2 1

3 3

4 3

5 2

6 0



Topological Sort
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Example

And a queue into which we can insert vertices 1 and 6

1 6

Queue

Vertex In-
degree

1 0

2 1

3 3

4 3

5 2

6 0
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Example

We dequeue the head (1), decrement the in-degree of all adjacent 
vertices:  2 and 4
– 2 is decremented to zero:  enqueue 2

6 2

Queue
Sort

1

Vertex In-
degree

1 0

2 0

3 3

4 2

5 2

6 0
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Example

We dequeue 6 and decrement the in-degree of all adjacent vertices
– Neither is decremented to zero

2

Queue
Sort
1, 6

Vertex In-
degree

1 0

2 0

3 2

4 2

5 1

6 0
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Example

We dequeue 2, decrement, and enqueue vertex 5

5

Queue
Sort
1, 6, 2

Vertex In-
degree

1 0

2 0

3 1

4 1

5 0

6 0
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Example

We dequeue 5, decrement, and enqueue vertex 3

3

Queue
Sort
1, 6, 2, 5

Vertex In-
degree

1 0

2 0

3 0

4 1

5 0

6 0
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Example

We dequeue 3, decrement 4, and add 4 to the queue

4

Queue
Sort
1, 6, 2, 5, 3

Vertex In-
degree

1 0

2 0

3 0

4 0

5 0

6 0



Topological Sort
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Example

We dequeue 4, there are no adjacent vertices to decrement the in 
degree

Queue
Sort
1, 6, 2, 5, 3, 4

Vertex In-
degree

1 0

2 0

3 0

4 0

5 0

6 0



Topological Sort
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Example

The queue is now empty, so a topological sort is

1, 6, 2, 5, 3, 4



  

Topological sort

● And BTW ... How do we implement the graph 
itself?



  

Topological sort

● And BTW ... How do we implement the graph 
itself?
● We typically don't go for a tree-like implementation 

of a node:
– Too much overhead:  Potentially very large number of 

associations, but actual graphs tend to contain a small 
fraction of that maximum.



  

Topological sort

● And BTW ... How do we implement the graph 
itself?
● Two typical approaches are:

– Adjacency lists
– Adjacency matrix



  

Topological sort

● With adjacency lists, vertices are associated 
with a number between 0 and

● An array of adjacencies is defined — each 
element of the array is a list (either a dynamic 
array or a linked list) of the vertices adjacent to 
the vertex corresponding to that subscript.

∣V∣−1



  

Topological sort

● Ajacency list — example:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}



  

Topological sort

● Ajacency list — example:

 
Representation:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}

0

1

2

3

4

5

6

2 4

3 4 5

4

3

3 5



  

Topological sort

● With an adjacency matrix, as the name 
suggests, we define a               array of 
booleans (if unweighted graph) or doubles (if 
weighted graph) where element at [row][col] 
indicates whether vertex col is adjacent to 
vertex row.

∣V∣×∣V∣



  

Topological sort

● Adjacency list  vs.  Adjacency matrix — which 
approach is better?



  

Topological sort

● Adjacency list  vs.  Adjacency matrix — which 
approach is better?
● Not surprisingly, it depends on the situation:

– If there are very few edges, then the adjacency matrix is 
inefficient in memory usage.

– However, if there are many edges, then the extra 
complexity in the adjacency list is not justified.



  

Topological sort

● Adjacency list  vs.  Adjacency matrix — which 
approach is better?
● Not surprisingly, it depends on the situation:

– If there are very few edges, then the adjacency matrix is 
inefficient in memory usage.

– However, if there are many edges, then the extra 
complexity in the adjacency list is not justified.

– With an adjacency list, we can efficiently iterate over all 
the adjacent vertices  (why not with an adjacency 
matrix?)

– However, with an adjacency matrix we can determine in 
Θ(1) whether two given vertices are adjacent.



  

Summary

● During today's class, we:
● Looked at Topological sort for Directed Acyclic 

Graphs (DAGs)
● Presented an algorithm to implement this operation.
● Saw some of its applications.
● Briefly looked into implementation strategies:

– Adjacency list
– Adjacency matrix
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