

Topological sort

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Topological sort

Standard reminder to set phones to
silent/vibrate mode, please!

Topological sort

● During today's class, we will:
● Look at Topological sort, a common and useful

operation with Directed Acyclic Graphs (DAGs)
● Discuss an algorithm to implement this operation.
● Briefly talk about some of its applications.

Topological sort

● The basic idea of a topological sort is the
following:
● Given a DAG, in which we could see adjacencies

as representing a pre-requisite task, we want to
place the vertices in sequence.

● The sequence must be one in which all
dependencies on pre-requisites are satisfied.

● Such a sequential arrangement of the vertices is
called a topological sort of the DAG.

Topological sort

● A simple and obvious application is:
● We have a DAG where vertices are tasks that we

want to perform (e.g., part of a compiler's code
generation subsystem).

● We need to execute all the tasks, but we can only
do one at a time.

● A topological sort gives a valid sequence of
executed tasks — no task can proceed until all
pre requisite tasks have completed.‑

Topological sort

● Formally, we would define a topological sort as
follows:
● Let be a DAG, with G = (V , E) V = {v1 , v2 , ⋯ , vn−1 , vn}

Topological sort

● Formally, we would define a topological sort as
follows:
● Let be a DAG, with

● Then, a topological sort is a sequence containing all
the elements in V, such that
for all i, j (), if there exists a path from
 to , then i < j.

G = (V , E) V = {v1 , v2 , ⋯ , vn−1 , vn}

{v k 1
, v k 2

, ⋯ , v k n−1
v k n}

0 ⩽ i , j ⩽ n
v k i v k j

Topological sort

● Formally, we would define a topological sort as
follows:
● Let be a DAG, with

● Then, a topological sort is a sequence containing all
the elements in V, such that
for all i, j (), if there exists a path from
 to , then i < j.

– Simply put, if there is a path from vertex v to vertex w,

then v appears before w in the output sequence.

G = (V , E) V = {v1 , v2 , ⋯ , vn−1 , vn}

{v k 1
, v k 2

, ⋯ , v k n−1
v k n}

0 ⩽ i , j ⩽ n
v k i v k j

Topological sort

● Question: why is the notion specific to DAGs?

Topological sort

● Question: why is the notion specific to DAGs?
● Let's have xkcd answer that question for us,

pointing out that cycles in dependencies can be
problematic:

Topological sort

● Question: why is the notion specific to DAGs?
● Let's have xkcd answer that question for us,

pointing out that cycles in dependencies can be
problematic:

http://xkcd.com/754/

Topological sort

● In fact, let's look at (and prove) this interesting
fact:
● A directed graph is a DAG if and only if it has a

topological sort.

Topological sort

● In fact, let's look at (and prove) this interesting
fact:
● A directed graph is a DAG if and only if it has a

topological sort.
● Proof:

We observe that there are two independent
statements to prove:
– A DAG has a topological sort
– If a directed graph has a topological sort, then it is a DAG

Topological sort

● In fact, let's look at (and prove) this interesting
fact:
● A directed graph is a DAG if and only if it has a

topological sort.
● Proof:

We observe that there are two independent
statements to prove:
– A DAG has a topological sort
– If a directed graph has a topological sort, then it is a DAG

● (this is a normal aspect of if-and-only-if statements;
proving them is really proving two statements)

Topological sort

● Let's start with the easy one:
● If a graph has a topological sort, then it is a DAG.
● Proof: (by contrapositive — that is, we prove the

statement “if a graph is not a DAG, it can not have
a topological sort”)

Topological sort

● Let's start with the easy one:
● If a graph has a topological sort, then it is a DAG.
● Proof: (by contrapositive — that is, we prove the

statement “if a graph is not a DAG, it can not have
a topological sort”)

Assuming the graph is not a DAG means that we
can find a cycle, say

Since there is a path from v1 to v2, then v1 must

appear before v2 in a topological sort.

But there is also a path from v2 to v1, so v2 must

appear before v1 in a topological sort.

{v1 , v2 , ⋯ , v k , v1}

Topological sort

We can not satisfy both conditions; therefore, the
graph can not have a topological sort.

Topological sort

● For the other part, we prove by induction (on
the number of vertices) that if a graph is a DAG,
then it has a topological sort.

Topological sort

● For the other part, we prove by induction (on
the number of vertices) that if a graph is a DAG,
then it has a topological sort.
● Base case: A graph with one vertex is a

DAG, and it has a topological sort.

Topological sort

● For the other part, we prove by induction (on
the number of vertices) that if a graph is a DAG,
then it has a topological sort.
● Base case: A graph with one vertex is a

DAG, and it has a topological sort.
● Induction hypothesis: A DAG with n vertices

has a topological sort.

Topological sort

● For the other part, we prove by induction (on
the number of vertices) that if a graph is a DAG,
then it has a topological sort.
● Base case: A graph with one vertex is a

DAG, and it has a topological sort.
● Induction hypothesis: A DAG with n vertices

has a topological sort.
● For the induction step, we must show that the

induction hypothesis implies that a DAG with
n+1 vertices must have a topological sort.

Topological sort

● Consider a graph with n+1 vertices.
● Such a graph must have at least one vertex v0 with

in degree 0 (can you prove this?).‑

Topological sort

● Consider a graph with n+1 vertices.
● Such a graph must have at least one vertex v0 with

in degree 0 (can you prove this?).‑
● Remove that vertex to obtain a graph with n

vertices.
– Since the original graph had no cycles and we are

removing edges (not adding), then the resulting graph
must be a DAG.

– By induction hypothesis, since it is a DAG with n vertices,
then it has a topological sort.

Topological sort

● Consider a graph with n+1 vertices.
● Thus, a topological sort can be constructed for the

n+1 vertices DAG, by prepending v0 to the
topological sort of the n vertices DAG.‑

(we can definitely do that, since v0 has in-degree 0,
so no path exists from any other vertex to v0, and
this means that it can appear before any other
vertex)

Topological sort

● A somewhat more “obvious” observation:
● A topological sort is not necessarily unique.

– There's one very solid argument to this in the previous
proof ... anyone?

Topological sort

● A somewhat more “obvious” observation:
● A topological sort is not necessarily unique.

– There's one very solid argument to this in the previous
proof ... anyone?

– For one, there may be several vertices with in-degree 0,
and either one of them can be the first one in a
topological sort.

Topological sort

● Next, let's look at an algorithm to obtain a
topological sort given a DAG.
● The idea is that any vertex with in-degree 0 can be

the first one in a topological sort.
● We can look at it as follows: each time that we

output one of those in-degree 0 vertices, we
remove it from the graph.
– That would in turn lead to creating additional vertices with

in degree 0, which we can now output.‑

Topological sort

● An example:
● There's only one vertex with in-degree 0 (vertex 1),

so we start with that one (and think of it as removed
from the graph):

Topological sort

● An example:
● As we “remove” 1, now 2 and 3 have in-degree 0,

so the topological sort could continue with either
one of these — we'll choose 2:

1

Topological sort

● An example:
● Without 2, now 4 and 5 have in-degree 0, so the

topological sort could continue with either 3, 4, or
5 — we'll choose 4:

1, 2

Topological sort

● An example:
● We continue ...

1, 2, 4

Topological sort

● An example:
● We continue ...

1, 2, 4, 8

Topological sort

● An example:
● We continue ...

1, 2, 4, 8, 5

Topological sort

● An example:
● We continue ...

1, 2, 4, 8, 5, 9

Topological sort

● An example:
● We continue ...

1, 2, 4, 8, 5, 9, 11

Topological sort

● An example:
● We continue ...

1, 2, 4, 8, 5, 9, 11, 3

Topological sort

● An example:
● We continue ...

1, 2, 4, 8, 5, 9, 11, 3 ··· etc.

Topological sort

● An example:
● At this point, the output is complete.

1, 2, 4, 8, 5, 9, 11, 3, 6, 10, 7, 12, 13

Topological sort

● The fact that a topological sort is not unique
should have become quite clear from this
example — anyone?

Topological sort

● The fact that a topological sort is not unique
should have become quite clear from this
example — anyone?
● At several points in the process, we had to choose

one among several equally valid candidates;
different choices would have produced different
topological sorts.

Topological sort

● A typical implementation uses an array of
in degrees, and optionally a queue (for ‑
efficiency)

Topological sort

● A typical implementation uses an array of
in degrees, and optionally a queue (for ‑
efficiency)
● We start by initializing the table of in-degrees (how

do we do this efficiently? A single pass through the
list of vertices, perhaps?)

Topological sort

● A typical implementation uses an array of
in degrees, and optionally a queue (for ‑
efficiency)
● We start by initializing the table of in-degrees (how

do we do this efficiently? A single pass through the
list of vertices, perhaps?)
– And BTW, why the big deal with doing this efficiently??

How would we do it inefficiently?

Topological sort

● Obtaining the in-degrees of every vertex
inefficiently is quite easy — for each vertex,
determine its in-degree by visiting every other
vertex to count how many this vertex is
adjacent to (quadratic run time).

Topological sort

● A more reasonable approach is: initialize all
in degrees in the array to 0. Visit each vertex, ‑
and increase by 1 the in-degree of each of the
vertices that are adjacent to the one being
visited.
● What's the run time of this?

Topological sort

● A more reasonable approach is: initialize all
in degrees in the array to 0. Visit each vertex, ‑
and increase by 1 the in-degree of each of the
vertices that are adjacent to the one being
visited.
● What's the run time of this?

● Would you agree if I said it is ?Θ(∣V∣+∣E∣)

Topological sort

● A more reasonable approach is: initialize all
in degrees in the array to 0. Visit each vertex, ‑
and increase by 1 the in-degree of each of the
vertices that are adjacent to the one being
visited.
● What's the run time of this?

● Would you agree if I said it is ?
● In fact, we'll see that this is the run time for the

topological sort (i.e., for the whole procedure)

Θ(∣V∣+∣E∣)

Topological sort

● Let's look at an example, directly from Prof.
Harder's slides.

Topological Sort

49

Example

Consider the following DAG with six vertices

Topological Sort

50

Example

Let us define the table of in-degrees
(or more likely, copy it)

Vertex In-
degree

1 0

2 1

3 3

4 3

5 2

6 0

Topological Sort

51

Example

And a queue into which we can insert vertices 1 and 6

1 6

Queue

Vertex In-
degree

1 0

2 1

3 3

4 3

5 2

6 0

Topological Sort

52

Example

We dequeue the head (1), decrement the in-degree of all adjacent
vertices: 2 and 4
– 2 is decremented to zero: enqueue 2

6 2

Queue
Sort

1

Vertex In-
degree

1 0

2 0

3 3

4 2

5 2

6 0

Topological Sort

53

Example

We dequeue 6 and decrement the in-degree of all adjacent vertices
– Neither is decremented to zero

2

Queue
Sort
1, 6

Vertex In-
degree

1 0

2 0

3 2

4 2

5 1

6 0

Topological Sort

54

Example

We dequeue 2, decrement, and enqueue vertex 5

5

Queue
Sort
1, 6, 2

Vertex In-
degree

1 0

2 0

3 1

4 1

5 0

6 0

Topological Sort

55

Example

We dequeue 5, decrement, and enqueue vertex 3

3

Queue
Sort
1, 6, 2, 5

Vertex In-
degree

1 0

2 0

3 0

4 1

5 0

6 0

Topological Sort

56

Example

We dequeue 3, decrement 4, and add 4 to the queue

4

Queue
Sort
1, 6, 2, 5, 3

Vertex In-
degree

1 0

2 0

3 0

4 0

5 0

6 0

Topological Sort

57

Example

We dequeue 4, there are no adjacent vertices to decrement the in
degree

Queue
Sort
1, 6, 2, 5, 3, 4

Vertex In-
degree

1 0

2 0

3 0

4 0

5 0

6 0

Topological Sort

58

Example

The queue is now empty, so a topological sort is

1, 6, 2, 5, 3, 4

Topological sort

● And BTW ... How do we implement the graph
itself?

Topological sort

● And BTW ... How do we implement the graph
itself?
● We typically don't go for a tree-like implementation

of a node:
– Too much overhead: Potentially very large number of

associations, but actual graphs tend to contain a small
fraction of that maximum.

Topological sort

● And BTW ... How do we implement the graph
itself?
● Two typical approaches are:

– Adjacency lists
– Adjacency matrix

Topological sort

● With adjacency lists, vertices are associated
with a number between 0 and

● An array of adjacencies is defined — each
element of the array is a list (either a dynamic
array or a linked list) of the vertices adjacent to
the vertex corresponding to that subscript.

∣V∣−1

Topological sort

● Ajacency list — example:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}

Topological sort

● Ajacency list — example:

Representation:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}

0

1

2

3

4

5

6

2 4

3 4 5

4

3

3 5

Topological sort

● With an adjacency matrix, as the name
suggests, we define a array of
booleans (if unweighted graph) or doubles (if
weighted graph) where element at [row][col]
indicates whether vertex col is adjacent to
vertex row.

∣V∣×∣V∣

Topological sort

● Adjacency list vs. Adjacency matrix — which
approach is better?

Topological sort

● Adjacency list vs. Adjacency matrix — which
approach is better?
● Not surprisingly, it depends on the situation:

– If there are very few edges, then the adjacency matrix is
inefficient in memory usage.

– However, if there are many edges, then the extra
complexity in the adjacency list is not justified.

Topological sort

● Adjacency list vs. Adjacency matrix — which
approach is better?
● Not surprisingly, it depends on the situation:

– If there are very few edges, then the adjacency matrix is
inefficient in memory usage.

– However, if there are many edges, then the extra
complexity in the adjacency list is not justified.

– With an adjacency list, we can efficiently iterate over all
the adjacent vertices (why not with an adjacency
matrix?)

– However, with an adjacency matrix we can determine in
Θ(1) whether two given vertices are adjacent.

Summary

● During today's class, we:
● Looked at Topological sort for Directed Acyclic

Graphs (DAGs)
● Presented an algorithm to implement this operation.
● Saw some of its applications.
● Briefly looked into implementation strategies:

– Adjacency list
– Adjacency matrix

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Example
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

