
  

Dijkstra's Algorithm

Carlos Moreno                                
cmoreno @ uwaterloo.ca                         

EIT-4103                                   

https://ece.uwaterloo.ca/~cmoreno/ece250

Image courtesy of wikipedia.org



  

Dijkstra's Algorithm

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Dijkstra's Algorithm

● During today's class we'll:
● Discuss the problem of shortest path in a graph, 

and its applications.
● Look at the naive solution (exhaustive search) and 

its run time.
● Discuss Dijkstra's Algorithm:

– Preliminaries – definitions / notation
– Description of the algorithm

● How and why it works



  

Dijkstra's Algorithm

● Shortest path in a graph:
● In a directed weighted graph (possibly with cycles) 

with positive weights:

● Given two vertices, vs and vd (source and 

destination) determine the path from vs to vd with 

lowest length
– We recall that this corresponds to lowest sum of the 

weights of the edges in the path.



  

Dijkstra's Algorithm

● Shortest path in a graph:
● Typical example:  driving directions — given the 

graph representing streets and intersections, 
highways, cities, etc., we want to determine the 
best route.



  

Dijkstra's Algorithm

● Shortest path in a graph:
● Typical example:  driving directions — given the 

graph representing streets and intersections, 
highways, cities, etc., we want to determine the 
best route.
– Careful with the notions of “best”  vs.  “shortest”



  

Dijkstra's Algorithm

● Shortest path in a graph:
● Typical example:  driving directions — given the 

graph representing streets and intersections, 
highways, cities, etc., we want to determine the 
best route.
– Careful with the notions of “best”  vs.  “shortest”
– The most typical goal in this example is getting the 
fastest route, not the shortest in actual (geographic) 
distance.



  

Dijkstra's Algorithm

● Shortest path in a graph:
● Typical example:  driving directions — given the 

graph representing streets and intersections, 
highways, cities, etc., we want to determine the 
best route.
– Careful with the notions of “best”  vs.  “shortest”
– The most typical goal in this example is getting the 
fastest route, not the shortest in actual (geographic) 
distance.

– This is not an issue in graph terminology — the weights 
in the graph may represent estimated time, distance, or 
some other cost — we always talk about “shortest path” 
when referring to the graph.



  

Dijkstra's Algorithm

● Shortest path in a graph:
● Another example of use — routing protocols in 

networking systems (in particular, the RFC 2328 
standard, part of the building blocks of the Internet, 
defines OSPF protocol, using Dikjstra's algorithm).
– The Internet can be represented as a graph where nodes 

are computers or in general “network nodes”, and edges 
represent a direct connection.

– For a message to get from a point to another, the 
message has to be passed from computer to computer;  
a path has to be found:

● We want to try the shortest (lowest time) path first   (why do we 
say shortest path first — why not simply:  we use the shortest 
path?)



  

Dijkstra's Algorithm

● Shortest path in a graph – example:

                Shortest path from A to E ?        

A

B

C

D

E

20

25

3

6

3

7

17

32



  

A

B

C

D

E

20

25

3

6

3

7

17

32

Dijkstra's Algorithm

● Shortest path in a graph – example:

                Shortest path from A to E ?        



  

A

B

C

D

E

20

25

3

6

3

7

17

32

Dijkstra's Algorithm

● Shortest path in a graph – example:

                 How do we know for sure ?        



  

Dijkstra's Algorithm

● Shortest path in a graph – example:

Possible paths:
● A-B-E
● A-C-E
● A-C-B-E
● A-D-E

A

B

C

D

E

20

25

3

6

3

7

17

32



  

Dijkstra's Algorithm

● Shortest path in a graph – example:
● Of course, this worked well for a 5-vertices graph.
● Asymptotically, for large values of n  (n being the 

number of vertices in the graph), the number of 
possible paths is ....  anyone?



  

Dijkstra's Algorithm

● Shortest path in a graph – example:
● Of course, this worked well for a 5-vertices graph.
● Asymptotically, for large values of n  (n being the 

number of vertices in the graph), the number of 
possible paths is ....  anyone?

● There's an issue to consider:
– Since the graph can contain cycles, then the number of 

possible paths is unbounded  (can cycle any arbitrary 
number of times before resuming our way to the target 
vertex)



  

Dijkstra's Algorithm

● Shortest path in a graph – example:
● If we assume no cycles  (or in any case, restrict the 

count of possible paths to simple paths — thus, 
containing no cycles), then ....  anyone?



  

Dijkstra's Algorithm

● Shortest path in a graph – example:
● If we assume no cycles  (or in any case, restrict the 

count of possible paths to simple paths — thus, 
containing no cycles), then ....  anyone?

● The actual math is a little heavy  (just a little, but 
enough that I will omit it) — but intuitively, it goes 
with n!  (more specifically, with (n-2)!)
– A worst-case has to consider every vertex adjacent to 

every other vertex;  in this case, the number of paths is 
really the number of permutations of the (n-2) remaining 
vertices.



  

Dijkstra's Algorithm

● Shortest path in a graph – example:
● That didn't look that bad, right?   The slight 

complication comes from the fact that there are also 
paths formed by fewer vertices, including all 
possible permutations of every subset of vertices.



  

Dijkstra's Algorithm

● Having seen how catastrophically slow things 
could be, let's look at Dijkstra's remarkable (and 
remarkably efficient) idea...



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 1:

A shortest path to a vertex never passes twice 
through the same vertex.



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 1:

A shortest path to a vertex never passes twice 
through the same vertex.

● Proof:   (this is quite obvious to see, and quite trivial 
to prove, right?)



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 1:

A shortest path to a vertex never passes twice 
through the same vertex.

● Proof:   (this is quite obvious to see, and quite trivial 
to prove, right?)



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 1:

A shortest path to a vertex never passes twice 
through the same vertex.
– Thus, once we decide that we know the shortest path to 

some vertex (some intermediate vertex), we know we 
won't visit that vertex again.



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 2:

If                                  is the shortest path from v1 to 

vm , then the shortest path from v1 to each of the 

points              is the corresponding initial portion of 
P — that is, 

P = (v1 , v2 ,⋯ , vm)

v k ∈ P
(v1 , v2 ,⋯ v k )



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 2:

If                                  is the shortest path from v1 to 

vm , then the shortest path from v1 to each of the 

points              is the corresponding initial portion of 
P — that is, 

● Proof:  (this one is also quite intuitive to see and 
quite easy to prove as well, right?)

P = (v1 , v2 ,⋯ , vm)

v k ∈ P
(v1 , v2 ,⋯ v k )



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 2:

If                                  is the shortest path from v1 to 

vm , then the shortest path from v1 to each of the 

points              is the corresponding initial portion of 
P — that is, 

● Proof:  (this one is also quite intuitive to see and 
quite easy to prove as well, right?)

P = (v1 , v2 ,⋯ , vm)

v k ∈ P
(v1 , v2 ,⋯ v k )



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – preliminaries:
● Observation 2 — corollary:

– Once we determine the shortest path to a vertex v, then 

the paths that continue from v to each of its adjacent 
vertices (its “neighbours”) could be the shortest path to 
each of those neighbour vertices.



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – definitions / notation:
● Having noticed that couple of details, let's agree on 

some definitions and notational conventions...



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – definitions / notation:
● Visited vertex:  a vertex for which we have 

determined the shortest path to it.  Once we set a 
vertex as visited, that is final, and we won't visit that 
vertex again.



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – definitions / notation:
● Visited vertex:  a vertex for which we have 

determined the shortest path to it.  Once we set a 
vertex as visited, that is final, and we won't visit that 
vertex again.

– (This is related to which observation?)



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – definitions / notation:
● Visited vertex:  a vertex for which we have 

determined the shortest path to it.  Once we set a 
vertex as visited, that is final, and we won't visit that 
vertex again.

– (This is related to which observation?)

● Marked vertex:  a vertex for which a path to it has 
been found — we mark that path as a candidate for 
shortest path to that vertex.



  

Dijkstra's Algorithm

● Dijkstra's Algorithm – definitions / notation:
● Visited vertex:  a vertex for which we have 

determined the shortest path to it.  Once we set a 
vertex as visited, that is final, and we won't visit that 
vertex again.

– (This is related to which observation?)

● Marked vertex:  a vertex for which a path to it has 
been found — we mark that path as a candidate for 
shortest path to that vertex.

– (This one is related to observation 2, right?)



  

Dijkstra's Algorithm

● Dijkstra's Algorithm:
● We're now ready to present the algorithm...



  

Dijkstra's Algorithm

● Dijkstra's Algorithm:
● Initialization:

– Each vertex has a “distance” associated to it, 
representing the length of the path to it (the sum 
of the weights) — set that distance to some large 
value (e.g., ∞), except for the starting vertex, 
whose distance is initialized to 0.

– Initialize every vertex to unvisited.



  

Dijkstra's Algorithm

● Dijkstra's Algorithm:
● At each iteration:

– Select the unvisited vertex with smallest non-∞ 
distance, denoted       .  Set it as visited.

– Mark each of the vertices adjacent to        (its 
“neighbours”):

● If a neighbour was not marked, set its 
distance to       's distance + the weight of the 
edge going to that neighbour.

● If it was marked, overwrite its distance if the 
result is smaller than its current distance. 

vmin
vmin

vmin



  

Dijkstra's Algorithm

● Dijkstra's Algorithm:
● Remarkably enough, that's it !!  (well, sort of ... ).



  

Dijkstra's Algorithm

● Dijkstra's Algorithm:
● Remarkably enough, that's it !!  (well, sort of ... ).

– We should add, of course, that the algorithm 
ends when we visit the target vertex.



  

Dijkstra's Algorithm

● Dijkstra's Algorithm:
● How about we give it a try!   Maybe find the shortest 

path from A to E:  (hopefully, you'll notice that there 
is a little problem with the algorithm as described ...  
We'll talk about this in class ... )

A

B

C

D

E

20

25

3

6

3

3

7

17

22

43


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

