

Minimum spanning trees

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Minimum spanning trees

Standard reminder to set phones to
silent/vibrate mode, please!

Minimum spanning trees

● During today's lesson:
● Introduce the notion of spanning tree for a

connected graph
● Discuss the notion of minimum spanning trees
● Look into two algorithms to find a minimum

spanning tree:
– Prim's alforithm
– Kruskal's algorithm

Minimum spanning trees

● Given a connected graph with n vertices, a
spanning tree is a collection of n−1 edges that
connect all n vertices.
● n−1 is the minimum number of edges required to

connect n vertices, resulting in a tree structure.
– If we take any vertex to be the root, we form a tree by

treating adjacent vertices as children.

● We observe that a spanning tree is not
necessarily unique.

Minimum spanning trees

● This is an example of a spanning tree:

Minimum spanning trees

● For the same graph, this is also a spanning
tree:

Minimum spanning trees

● If the graph is weighted, then a spanning tree
has a weight, given by the sum of the edges
that constitute the spanning tree.

Minimum spanning trees

● If the graph is weighted, then a spanning tree
has a weight, given by the sum of the edges
that constitute the spanning tree.

● A minimum spanning tree is a spanning tree
with minimum weight.
● A minimum spanning tree is not necessarily unique!
● That is, there may be several different spanning

trees with the same weight — a weight such that no
spanning tree has a weight lower than this.

Minimum spanning trees

● We'll look at some examples of applications in
class.

● We'll also discuss two algorithms to obtain a
minimum spanning tree.

Minimum spanning trees

● Prim's algorithm has certain aspects in common
with Dijkstra's algorithm.
● At each iteration, the spanning tree is expanded by

choosing the vertex with smallest distance to the
“current” spanning tree.
– Similar idea, and in fact, as we'll see, the reason why it

works (and the argument to prove that this step works) is
almost identical to Dijkstra's algorithm.

– A key difference is that in Dijkstra's algorithm we select
the vertex with lowest distance (the “total” distance from
the starting vertex) — with Prim's algorithm, we select the
lowest distance given by the edge that connects to the
current spanning tree.

Minimum spanning trees

● The algorithm is quite simple:
● Initialization:

● Select a root node and set its distance as 0
● Set the distance to all other vertices as ∞
● Set all vertices to being unvisited
● Set the parent pointer of all vertices to NULL

Minimum spanning trees

● Then, Iterate while there are unvisited vertices
with distance < ∞
● Select the unvisited vertex with minimum distance
● Mark that vertex as visited
● For each adjacent vertex, if the weight of the

connecting edge is less than the current distance
associated to that vertex:

– Update the distance to equal the weight of the
edge

– Set the current vertex as the parent of the
adjacent vertex

Minimum spanning trees

● Kruskal's algorithm takes a different — but also
interesting — approach:

● Put the edges in order by weight, and add the lowest
weight edge to the spanning tree if it does not create a
cycle.

Minimum spanning trees

● Kruskal's algorithm takes a different — but also
interesting — approach:

● Put the edges in order by weight, and add the lowest
weight edge to the spanning tree if it does not create a
cycle.

● How do we (efficiently!) determine whether adding
an edge will create a cycle? (we'll discuss this
detail in class)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

