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Minimum spanning trees

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Minimum spanning trees

● During today's lesson:
● Introduce the notion of spanning tree for a 

connected graph
● Discuss the notion of minimum spanning trees
● Look into two algorithms to find a minimum 

spanning tree:
– Prim's alforithm
– Kruskal's algorithm



  

Minimum spanning trees

● Given a connected graph with n vertices, a 
spanning tree is a collection of n−1 edges that 
connect all n vertices.
● n−1 is the minimum number of edges required to 

connect n vertices, resulting in a tree structure.
– If we take any vertex to be the root, we form a tree by 

treating adjacent vertices as children.

● We observe that a spanning tree is not 
necessarily unique.



  

Minimum spanning trees

● This is an example of a spanning tree:



  

Minimum spanning trees

● For the same graph, this is also a spanning 
tree:



  

Minimum spanning trees

● If the graph is weighted, then a spanning tree 
has a weight, given by the sum of the edges 
that constitute the spanning tree.



  

Minimum spanning trees

● If the graph is weighted, then a spanning tree 
has a weight, given by the sum of the edges 
that constitute the spanning tree.

● A minimum spanning tree is a spanning tree 
with minimum weight.
● A minimum spanning tree is not necessarily unique!
● That is, there may be several different spanning 

trees with the same weight — a weight such that no 
spanning tree has a weight lower than this.



  

Minimum spanning trees

● We'll look at some examples of applications in 
class.

● We'll also discuss two algorithms to obtain a 
minimum spanning tree.



  

Minimum spanning trees

● Prim's algorithm has certain aspects in common 
with Dijkstra's algorithm.
● At each iteration, the spanning tree is expanded by 

choosing the vertex with smallest distance to the 
“current” spanning tree.
– Similar idea, and in fact, as we'll see, the reason why it 

works (and the argument to prove that this step works) is 
almost identical to Dijkstra's algorithm.

– A key difference is that in Dijkstra's algorithm we select 
the vertex with lowest distance (the “total” distance from 
the starting vertex) — with Prim's algorithm, we select the 
lowest distance given by the edge that connects to the 
current spanning tree.



  

Minimum spanning trees

● The algorithm is quite simple:
● Initialization:

● Select a root node and set its distance as 0
● Set the distance to all other vertices as ∞ 
● Set all vertices to being unvisited
● Set the parent pointer of all vertices to NULL



  

Minimum spanning trees

● Then, Iterate while there are unvisited vertices 
with distance < ∞
● Select the unvisited vertex with minimum distance
● Mark that vertex as visited
● For each adjacent vertex, if the weight of the 

connecting edge is less than the current distance 
associated to that vertex:

– Update the distance to equal the weight of the 
edge

– Set the current vertex as the parent of the 
adjacent vertex



  

Minimum spanning trees

● Kruskal's algorithm takes a different — but also 
interesting — approach:

● Put the edges in order by weight, and add the lowest 
weight edge to the spanning tree if it does not create a 
cycle.



  

Minimum spanning trees

● Kruskal's algorithm takes a different — but also 
interesting — approach:

● Put the edges in order by weight, and add the lowest 
weight edge to the spanning tree if it does not create a 
cycle.

● How do we (efficiently!) determine whether adding 
an edge will create a cycle?   (we'll discuss this 
detail in class)
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