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Graphs – Implementation Tips

Standard reminder to set phones to 
silent/vibrate mode, please!



  

Graphs – Implementation Tips

● Today's lesson:
● Finish off the topic of Graphs with some tips on the 

various techniques to implement them
– Should be helpful for your lab work this week!

● Look into the C++ Standard Library vector class
– Generic array class that handles memory management 

“behind the scenes”
● Take a quick look a list class, also from the 

Standard Library.



  

Graphs – Implementation Tips

● We'll be using my own introductory tutorial on 
C++ vectors: 
http://www.mochima.com/tutorials/vectors.html 

http://www.mochima.com/tutorials/vectors.html
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● Copyright / academic integrity statement:
● The code samples are only for illustration purposes.
● You are NOT ALLOWED to directly copy fragments 

of code into your lab project.
● You are of course allowed to use the ideas;  but 

directly copying from these slides to your project 
would constitute an academic offence.



  

Graphs – Implementation Tips

● We recall our two typical implementation 
strategies — adjacency lists and adjacency 
matrix

● We briefly discussed this when talking about 
topological sort.



  

Graphs – Implementation Tips

● With adjacency lists, vertices are associated 
with a number between 0 and         , or between 
1 and     , disregarding element 0.

● An array of adjacencies is defined — each 
element of the array is a list (either a dynamic 
array or a linked list) of the vertices adjacent to 
the vertex corresponding to that subscript.

∣V∣−1
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● Ajacency list — example:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}



  

Graphs – Implementation Tips

● Ajacency list — example:

 
Representation:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}
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Graphs – Implementation Tips

● Ajacency list — example:

 
Could also be a “jagged array” (an array of 
arrays):

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}
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Graphs – Implementation Tips

● The former could be implemented as a vector 
of lists:
    std::vector< std::list<int> >



  

Graphs – Implementation Tips

● The former could be implemented as a vector 
of lists:
    std::vector< std::list<int> >

● Notice a little “paper cut” feature in C++ (fixed 
in the new C++11 standard), the space 
between the two > > at the end is not optional!!  
(if you omit it, the compiler would parse the >> 
as the bitshift operator, and would result in a 
syntax error!)
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● The latter is similar — a vector of vectors:
    std::vector< std::vector<int> >
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● Adding edges works similarly with both vector 
of vectors and vector of lists — the following 
example inserts edge (u,v):
  vector< vector<int> > adjacencies(n+1);
    // ...

  adjacencies[u].push_back (v);
 

(the sample assumes a using std::vector; 
directive, or using namespace std; — the latter 
generally not recommended on a header file)



  

Graphs – Implementation Tips

● This trick works for unweighted graphs, since 
we only need to denote the presence of an 
edge.



  

Graphs – Implementation Tips

● This trick works for unweighted graphs, since 
we only need to denote the presence of an 
edge.
● The fact that the value is in the “row” array means 

that that vertex is adjacent to the vertex 
corresponding to the subscript of the given row.



  

Graphs – Implementation Tips

● This trick works for unweighted graphs, since 
we only need to denote the presence of an 
edge.
● The fact that the value is in the “row” array means 

that that vertex is adjacent to the vertex 
corresponding to the subscript of the given row.

● If we need to indicate a weight (e.g., a double 
value), we could use an additional trick.
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● Create a simple class Edge that has two data 
members — target vertex, and weight:

class Edge
{
    int d_vertex;
    double d_weight;
public:
    Edge (int vertex, double weight)
      : d_vertex(vertex), d_weight(weight)
    {}

    int vertex() const { return d_vertex; }
    double weight() const { return d_weight };
};
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● With this, you would declare a vector of vectors 
of Edges:
 

  vector< vector<Edge> > adjacencies;

●  Adding edges is similar — the following 
example inserts edge (u,v) with weight w:

  vector< vector<int> > adjacencies(n+1);
    // ...

  adjacencies[u].push_back (Edge(v,w));
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● As an example, if we wanted to compute the 
weight of the graph (the sum of the weights of 
all edges):

for (vector< vector<Edge> >::size_type v = 1;
     v < adjacencies.size();
     ++v)
{
    for (vector<Edge>::size_type e = 0;
         e < adjacencies[v].size();
         ++e)
    {
        sum += adjacencies[v][e].weight();
    }
}



  

Graphs – Implementation Tips

● If we're representing a directed graph, we 
notice that this representation provides a very 
efficient (constant time) way to determine the 
out-degree of a vertex — for example, the 
out degree of vertex ‑ v is given by:

    adjacencies[v].size()



  

Graphs – Implementation Tips

● If we're representing a directed graph, we 
notice that this representation provides a very 
efficient (constant time) way to determine the 
out-degree of a vertex — for example, the 
out degree of vertex ‑ v is given by:

    adjacencies[v].size()

● (BTW... Why only for directed graphs?)
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● Removing an edge is also simple (plus/minus 
complications with first locating the edge).  To 
remove elements from a vector (inefficient, but 
simple in terms of syntax):
http://www.mochima.com/tutorials/vectors.html#insert_remove 

http://www.mochima.com/tutorials/vectors.html#insert_remove
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● If you want to use a linked list (std::list) for the 
list of edges, removing is more efficient, but the 
code as a whole gets slightly more 
complicated — see my STL tutorial for details: 
http://www.mochima.com/tutorials/STL.html 

● The code to remove edge (u,v) goes more or 
less like:

http://www.mochima.com/tutorials/STL.html
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for (list<Edge>::iterator e = adjacencies[u].begin();
                          e != adjacencies[u].end();
                          ++e)
{
    if (e->vertex() == v)
    {
        adjacencies.erase (e);
        break;
    }
}



  

Graphs – Implementation Tips

● Adjacency lists have the advantage of being 
more storage-efficient when |E| is much less 
than |V |²



  

Graphs – Implementation Tips

● Adjacency lists have the advantage of being 
more storage-efficient when |E| is much less 
than |V |²

● Additionally, they have the advantage of more 
efficient access for things like operations on 
each of the adjacent vertices to a given vertices 
(such as Prim's and Dijkstra's algorithms)
● We just need to iterate over the elements of the 

linked list or array of edges  (the “row”)



  

Graphs – Implementation Tips

● Adjacency lists have the advantage of being 
more storage-efficient when |E| is much less 
than |V |²

● Additionally, they have the advantage of more 
efficient access for things like operations on 
each of the adjacent vertices to a given vertices 
(such as Prim's and Dijkstra's algorithms)
● We just need to iterate over the elements of the 

linked list or array of edges  (the “row”)
● So this is also an advantage only when we have 

few edges.
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● Adjacency lists are not particularly efficient, for 
example, to test whether a vertex is adjacent to 
another vertex — the sample below checks 
whether vertex v is adjacent to vertex u:

for (vector<Edge>::size_type e = 0;
     e < adjacencies[u].size();
     ++e)
{
    if (adjacencies[u][e].vertex() == v)
    {
        return true;
            // assuming a function/method
    }
}
return false;
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● With a linked list, the loop would go more or 
less like:
 

for (list<Edge>::iterator e = adjacencies[u].begin();
                          e != adjacencies[u].end();
                          ++e)
{
    if (e->vertex() == v)
    {
        return true;
    }
}
return false;
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● Let's take a look at the implementation using 
the Adjacency matrix approach... 
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● Two-dimensional dynamic arrays in C++ can be 
conveniently implemented as an array of arrays 
(that is, a vector of vectors).
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● Two-dimensional dynamic arrays in C++ can be 
conveniently implemented as an array of arrays 
(that is, a vector of vectors).

● The main difference is that we want to have the 
allocated full-size for all rows right from the 
start.
● So, in the constructor we would do 

something like:



  

Graphs – Implementation Tips

Graph::Graph (int n)
    : adjacencies(n+1)
{
    for (vector<···>::size_type i = 1; i <= n; ++i)
    {
        adjacencies[i].resize(n+1);
    }
}

See http://www.mochima.com/tutorials/vectors.html#resize 
for more details.

http://www.mochima.com/tutorials/vectors.html#resize
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● The data type of adjacencies in this case would 
be  vector< vector<bool> >  if an unweighted 
graph (we just store true in adjacencies[u][v] 
to indicate that there is an edge from u to v), or 
vector< vector<double> >  if weighted.
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● The data type of adjacencies in this case would 
be  vector< vector<bool> >  if an unweighted 
graph (we just store true in adjacencies[u][v] 
to indicate that there is an edge from u to v), or 
vector< vector<double> >  if weighted.
● In this sense, the implementation for a weighted 

graph is a little bit simpler (really, just a liiitle bit)
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● So, what types of operations are efficient with 
an adjacency matrix?
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● So, what types of operations are efficient with 
an adjacency matrix?
● Checking if two given vertices are adjacent is 

quite trivial — example to check if vertex v is 
adjacent to vertex u:
 

bool Graph::adjacent (int u, int v) const
{
    return adjacencies[u][v];
}
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● That was for an unweighted graph (adjacencies 
stores bool values).  For a weighted graph, 
assuming non-negative weights:

 

bool Graph::adjacent (int u, int v) const
{
    return adjacencies[u][v] >= 0;
}
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● Things that require going over each adjacent 
vertex tend to be less efficient:

 

for (vector<double>::size_type i = 1;
     i < adjacencies[u].size();
     ++i)
{
    if (adjacencies[u][v] >= 0)
    {
        // do whatever is required
    }
}
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● With either approach (adjacency list or 
adjacency matrix), one important advantage is 
that a big portion of the memory management 
is taken care of for you — classes vector and 
list encapsulate all the memory management 
aspects.
● Their constructor, destructor, copy-constructor, and 

assignment operators handle all the details.
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● But this is really no different than coding it 
yourself by properly breaking down the design 
into pieces:
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● But this is really no different than coding it 
yourself by properly breaking down the design 
into pieces:
● If you create your linked list class, you'd provide a 

constructor, destructor, copy-constructor, etc.
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● But this is really no different than coding it 
yourself by properly breaking down the design 
into pieces:
● If you create your linked list class, you'd provide a 

constructor, destructor, copy-constructor, etc.
● So, if you use that linked list as a data member in 

your class Graph, you wouldn't need to provide a 
destructor for Graph  (since the data member 
encapsulates all the functionality required).



  

Summary

● During today's class, we:
● Finished off the topic of graphs.
● Discussed some implementation details and tips.
● Looked into standard library facilities vector and list

– Vector useful for both adjacency lists and 
adjacency matrix

– List requires iterators for accessing elements.
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