

Graphs – Implementation Tips

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

0

1

2

3

4

5

6

2 4

3 4 5

4

3

3 5

Ø0

21

32

43

Ø4

35

36

4

5

4 5

55

Graphs – Implementation Tips

Standard reminder to set phones to
silent/vibrate mode, please!

Graphs – Implementation Tips

● Today's lesson:
● Finish off the topic of Graphs with some tips on the

various techniques to implement them
– Should be helpful for your lab work this week!

● Look into the C++ Standard Library vector class
– Generic array class that handles memory management

“behind the scenes”
● Take a quick look a list class, also from the

Standard Library.

Graphs – Implementation Tips

● We'll be using my own introductory tutorial on
C++ vectors:
http://www.mochima.com/tutorials/vectors.html

http://www.mochima.com/tutorials/vectors.html

Graphs – Implementation Tips

● Copyright / academic integrity statement:
● The code samples are only for illustration purposes.
● You are NOT ALLOWED to directly copy fragments

of code into your lab project.
● You are of course allowed to use the ideas; but

directly copying from these slides to your project
would constitute an academic offence.

Graphs – Implementation Tips

● We recall our two typical implementation
strategies — adjacency lists and adjacency
matrix

● We briefly discussed this when talking about
topological sort.

Graphs – Implementation Tips

● With adjacency lists, vertices are associated
with a number between 0 and , or between
1 and , disregarding element 0.

● An array of adjacencies is defined — each
element of the array is a list (either a dynamic
array or a linked list) of the vertices adjacent to
the vertex corresponding to that subscript.

∣V∣−1
∣V∣

Graphs – Implementation Tips

● Ajacency list — example:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}

Graphs – Implementation Tips

● Ajacency list — example:

Representation:

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}

0

1

2

3

4

5

6

2 4

3 4 5

4

3

3 5

Graphs – Implementation Tips

● Ajacency list — example:

Could also be a “jagged array” (an array of
arrays):

V = {1, 2,3, 4,5,6}
E = {(1,2) ,(1,4) ,(2,3) ,(2,4) ,(2,5) ,(3,4) ,(5,3) ,(6,3) ,(6,5)}

Ø0

21

32

43

Ø4

35

36

4

5

4 5

55

Graphs – Implementation Tips

● The former could be implemented as a vector
of lists:
 std::vector< std::list<int> >

Graphs – Implementation Tips

● The former could be implemented as a vector
of lists:
 std::vector< std::list<int> >

● Notice a little “paper cut” feature in C++ (fixed
in the new C++11 standard), the space
between the two > > at the end is not optional!!
(if you omit it, the compiler would parse the >>
as the bitshift operator, and would result in a
syntax error!)

Graphs – Implementation Tips

● The latter is similar — a vector of vectors:
 std::vector< std::vector<int> >

Graphs – Implementation Tips

● Adding edges works similarly with both vector
of vectors and vector of lists — the following
example inserts edge (u,v):
 vector< vector<int> > adjacencies(n+1);
 // ...

 adjacencies[u].push_back (v);

(the sample assumes a using std::vector;
directive, or using namespace std; — the latter
generally not recommended on a header file)

Graphs – Implementation Tips

● This trick works for unweighted graphs, since
we only need to denote the presence of an
edge.

Graphs – Implementation Tips

● This trick works for unweighted graphs, since
we only need to denote the presence of an
edge.
● The fact that the value is in the “row” array means

that that vertex is adjacent to the vertex
corresponding to the subscript of the given row.

Graphs – Implementation Tips

● This trick works for unweighted graphs, since
we only need to denote the presence of an
edge.
● The fact that the value is in the “row” array means

that that vertex is adjacent to the vertex
corresponding to the subscript of the given row.

● If we need to indicate a weight (e.g., a double
value), we could use an additional trick.

Graphs – Implementation Tips

● Create a simple class Edge that has two data
members — target vertex, and weight:

class Edge
{
 int d_vertex;
 double d_weight;
public:
 Edge (int vertex, double weight)
 : d_vertex(vertex), d_weight(weight)
 {}

 int vertex() const { return d_vertex; }
 double weight() const { return d_weight };
};

Graphs – Implementation Tips

● With this, you would declare a vector of vectors
of Edges:

 vector< vector<Edge> > adjacencies;

● Adding edges is similar — the following
example inserts edge (u,v) with weight w:

 vector< vector<int> > adjacencies(n+1);
 // ...

 adjacencies[u].push_back (Edge(v,w));

Graphs – Implementation Tips

● As an example, if we wanted to compute the
weight of the graph (the sum of the weights of
all edges):

for (vector< vector<Edge> >::size_type v = 1;
 v < adjacencies.size();
 ++v)
{
 for (vector<Edge>::size_type e = 0;
 e < adjacencies[v].size();
 ++e)
 {
 sum += adjacencies[v][e].weight();
 }
}

Graphs – Implementation Tips

● If we're representing a directed graph, we
notice that this representation provides a very
efficient (constant time) way to determine the
out-degree of a vertex — for example, the
out degree of vertex ‑ v is given by:

 adjacencies[v].size()

Graphs – Implementation Tips

● If we're representing a directed graph, we
notice that this representation provides a very
efficient (constant time) way to determine the
out-degree of a vertex — for example, the
out degree of vertex ‑ v is given by:

 adjacencies[v].size()

● (BTW... Why only for directed graphs?)

Graphs – Implementation Tips

● Removing an edge is also simple (plus/minus
complications with first locating the edge). To
remove elements from a vector (inefficient, but
simple in terms of syntax):
http://www.mochima.com/tutorials/vectors.html#insert_remove

http://www.mochima.com/tutorials/vectors.html#insert_remove

Graphs – Implementation Tips

● If you want to use a linked list (std::list) for the
list of edges, removing is more efficient, but the
code as a whole gets slightly more
complicated — see my STL tutorial for details:
http://www.mochima.com/tutorials/STL.html

● The code to remove edge (u,v) goes more or
less like:

http://www.mochima.com/tutorials/STL.html

Graphs – Implementation Tips

for (list<Edge>::iterator e = adjacencies[u].begin();
 e != adjacencies[u].end();
 ++e)
{
 if (e->vertex() == v)
 {
 adjacencies.erase (e);
 break;
 }
}

Graphs – Implementation Tips

● Adjacency lists have the advantage of being
more storage-efficient when |E| is much less
than |V |²

Graphs – Implementation Tips

● Adjacency lists have the advantage of being
more storage-efficient when |E| is much less
than |V |²

● Additionally, they have the advantage of more
efficient access for things like operations on
each of the adjacent vertices to a given vertices
(such as Prim's and Dijkstra's algorithms)
● We just need to iterate over the elements of the

linked list or array of edges (the “row”)

Graphs – Implementation Tips

● Adjacency lists have the advantage of being
more storage-efficient when |E| is much less
than |V |²

● Additionally, they have the advantage of more
efficient access for things like operations on
each of the adjacent vertices to a given vertices
(such as Prim's and Dijkstra's algorithms)
● We just need to iterate over the elements of the

linked list or array of edges (the “row”)
● So this is also an advantage only when we have

few edges.

Graphs – Implementation Tips

● Adjacency lists are not particularly efficient, for
example, to test whether a vertex is adjacent to
another vertex — the sample below checks
whether vertex v is adjacent to vertex u:

for (vector<Edge>::size_type e = 0;
 e < adjacencies[u].size();
 ++e)
{
 if (adjacencies[u][e].vertex() == v)
 {
 return true;
 // assuming a function/method
 }
}
return false;

Graphs – Implementation Tips

● With a linked list, the loop would go more or
less like:

for (list<Edge>::iterator e = adjacencies[u].begin();
 e != adjacencies[u].end();
 ++e)
{
 if (e->vertex() == v)
 {
 return true;
 }
}
return false;

Graphs – Implementation Tips

● Let's take a look at the implementation using
the Adjacency matrix approach...

Graphs – Implementation Tips

● Two-dimensional dynamic arrays in C++ can be
conveniently implemented as an array of arrays
(that is, a vector of vectors).

Graphs – Implementation Tips

● Two-dimensional dynamic arrays in C++ can be
conveniently implemented as an array of arrays
(that is, a vector of vectors).

● The main difference is that we want to have the
allocated full-size for all rows right from the
start.
● So, in the constructor we would do

something like:

Graphs – Implementation Tips

Graph::Graph (int n)
 : adjacencies(n+1)
{
 for (vector<···>::size_type i = 1; i <= n; ++i)
 {
 adjacencies[i].resize(n+1);
 }
}

See http://www.mochima.com/tutorials/vectors.html#resize
for more details.

http://www.mochima.com/tutorials/vectors.html#resize

Graphs – Implementation Tips

● The data type of adjacencies in this case would
be vector< vector<bool> > if an unweighted
graph (we just store true in adjacencies[u][v]
to indicate that there is an edge from u to v), or
vector< vector<double> > if weighted.

Graphs – Implementation Tips

● The data type of adjacencies in this case would
be vector< vector<bool> > if an unweighted
graph (we just store true in adjacencies[u][v]
to indicate that there is an edge from u to v), or
vector< vector<double> > if weighted.
● In this sense, the implementation for a weighted

graph is a little bit simpler (really, just a liiitle bit)

Graphs – Implementation Tips

● So, what types of operations are efficient with
an adjacency matrix?

Graphs – Implementation Tips

● So, what types of operations are efficient with
an adjacency matrix?
● Checking if two given vertices are adjacent is

quite trivial — example to check if vertex v is
adjacent to vertex u:

bool Graph::adjacent (int u, int v) const
{
 return adjacencies[u][v];
}

Graphs – Implementation Tips

● That was for an unweighted graph (adjacencies
stores bool values). For a weighted graph,
assuming non-negative weights:

bool Graph::adjacent (int u, int v) const
{
 return adjacencies[u][v] >= 0;
}

Graphs – Implementation Tips

● Things that require going over each adjacent
vertex tend to be less efficient:

for (vector<double>::size_type i = 1;
 i < adjacencies[u].size();
 ++i)
{
 if (adjacencies[u][v] >= 0)
 {
 // do whatever is required
 }
}

Graphs – Implementation Tips

● With either approach (adjacency list or
adjacency matrix), one important advantage is
that a big portion of the memory management
is taken care of for you — classes vector and
list encapsulate all the memory management
aspects.
● Their constructor, destructor, copy-constructor, and

assignment operators handle all the details.

Graphs – Implementation Tips

● But this is really no different than coding it
yourself by properly breaking down the design
into pieces:

Graphs – Implementation Tips

● But this is really no different than coding it
yourself by properly breaking down the design
into pieces:
● If you create your linked list class, you'd provide a

constructor, destructor, copy-constructor, etc.

Graphs – Implementation Tips

● But this is really no different than coding it
yourself by properly breaking down the design
into pieces:
● If you create your linked list class, you'd provide a

constructor, destructor, copy-constructor, etc.
● So, if you use that linked list as a data member in

your class Graph, you wouldn't need to provide a
destructor for Graph (since the data member
encapsulates all the functionality required).

Summary

● During today's class, we:
● Finished off the topic of graphs.
● Discussed some implementation details and tips.
● Looked into standard library facilities vector and list

– Vector useful for both adjacency lists and
adjacency matrix

– List requires iterators for accessing elements.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

