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silent/vibrate mode, please!



  

NP-Completeness

● During today's lesson:
● Look at some important categorizations of 

algorithms based on their run times.
– Including one important distinction:  polynomial time vs. 

exponential time.
● Look into the notion of decision problems, and their 

relationship to an associated computation or 
optimization problem.

● Introduce the sets P and NP.
● Introduce the notions of NP-hard and NP-complete 

problems.
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mostly interested in the distinction of polynomial 
time algorithms vs. non-polynomial time 
algorithms (exponential and above):
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● For the purpose of this discussion, we will be 
mostly interested in the distinction of polynomial 
time algorithms vs. non-polynomial time 
algorithms (exponential and above):
● Polynomial time:  Algorithms with run time

for some            .
 

● Non-polynomial time:  Algorithms with run time
           for some          .

O (nα
)

α > 0

Ω(an) a > 1
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● Examples of polynomial time:
● Constant time
● Logarithmic
● Linear time
● n log n
● Things like n², n³, n³ log n
● Etc.
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● Examples of non-polynomial time:
● Exponentials (of any base):  2n, 10n, etc.
● n 2n

● n² 2n

● n!
● nn

● Etc.
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● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm 

exists that solves the problem is called a tractable 
problem.

● Otherwise, we refer to them as intractable 
problems.
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● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm 

exists that solves the problem is called a tractable 
problem.

● Otherwise, we refer to them as intractable 
problems.

● Notice the subtlety — a polynomial time algorithm 
exists  vs.  a polynomial time algorithm is known.
– We often see statements such as  “this problem is 

believed to be intractable”  or  “is considered intractable”, 
meaning that no polynomial time algorithm is known, and 
it is not known for sure that none exist, but it is believed 
that none exist.
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● An important notion related to these is that of 
polynomial time reduction.
● We talked about reductions — solving problem A 

using an algorithm that solves problem B.
– In this case, we say that A reduces to B.
– Notice that we're applying the notion to the problems, and 

not necessarily to the algorithms — solving problem A 
reduces to being able to solve problem B.
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● The reduction takes some time, since we need 
to transform an instance of a problem into 
another problem
● This typically refers to transforming the input of  

algorithm A into a valid input for algorithm B, then 
invoking algorithm B, capture its output and derive 
(transform) the output for algorithm A.
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● Relating to today's topic, since we're interested 
in the distinction between polynomial time vs. 
non-polynomial time algorithms, then the 
relevant reductions are those with polynomial 
run times:
● They will allow us to prove statements about an 

algorithm having polynomial time or not.
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● For example, given:

● If we know that TA(n) is non-polynomial and 
we're trying to prove that TB(n) is also 
non polynomial, then we need T‑ R(n) to be 
polynomial — otherwise, the statement (the 
equation) would say absolutely nothing about 
TB(n) being or not polynomial.

TA(n) = TR (n) + TB(n)
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● For example, given:

● On the other hand, if TB(n) is polynomial and 
we're trying to show that we can find an 
algorithm A with polynomial time TA(n) by 
reducing A to B, then in this case we also need 
TR(n) to be polynomial — otherwise, the above 
equation says that TA(n) is non-polynomial, so 
we've failed to find such polynomial time 
algorithm A.

TA(n) = TR (n) + TB(n)
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● Some times we refer to polynomial time 
reduction as an efficient reduction.
● In this context, polynomial time is efficient, 

non polynomial time is inefficient.‑
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● Notation:
● If problem A reduces to problem B, that means that 

solving A can not be harder than solving B.
● This is denoted by:  
● We read it as:  A polynomial-time-reduces-to B  (or  

A reduces to B in polynomial time)

A⩽P B
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● Notice that if            :
● We can not know whether A is easier (more 

efficient) than B or equally as hard — the only thing 
that we know is that A is, at most, as hard as B, 
since we can always use B to solve A.

A⩽P B
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● Notice that if            :
● We can not know whether A is easier (more 

efficient) than B or equally as hard — the only thing 
that we know is that A is, at most, as hard as B, 
since we can always use B to solve A.

● But there could always be some other way of 
solving A which is more efficient — the fact that we 
find a reduction from A to B says nothing about that.

A⩽P B
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NP-Completeness

● A fascinating class of questions on algorithmic 
theory arises when we consider decision 
problems and their complexity.

● A decision problem is simply a problem with a 
yes/no answer
● An algorithm that solves a decision problem outputs 

a boolean value.
● Notice the interesting detail:  when reducing a 

decision problem to another decision problem, we 
only need to do a transformation for the input — the 
output for both algorithms is already compatible (at 
most, we may need to negate the output)
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of interest are related to a computational or 
optimization problem.
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● Many (perhaps most) of the decision problems 
of interest are related to a computational or 
optimization problem.
● Examples:
● Decision problem:  Determine whether a given 

graph has a Hamiltonian cycle
– Related computational problem:  Find a Hamiltonian 

cycle (if there is one) in a given graph.
● Decision problem:  Given two vertices in a given 

graph, is there a path between them shorter than a 
given value k?
– Optimization problem:  Find the shortest path.
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● The decision problem always reduces to its 
associated optimization or computational 
problem
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● The decision problem always reduces to its 
associated optimization or computational 
problem — examples:
● We can solve the problem of determining whether 

there is a path shorter than k if we have an 
algorithm that finds the shortest path — simply 
invoke that algorithm, look at its output and check 
whether the shortest path's length is less than k.
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● The decision problem always reduces to its 
associated optimization or computational 
problem — examples:
● We can solve the problem of determining whether 

there is a path shorter than k if we have an 
algorithm that finds the shortest path — simply 
invoke that algorithm, look at its output and check 
whether the shortest path's length is less than k.

● We can determine whether a graph has a 
Hamiltonian cycle if we have an algorithm that finds 
a Hamiltonian cycle in a graph.
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often be reduced to the decision problem.
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● The converse is often true as well — the 
optimization or computational problem can 
often be reduced to the decision problem.  
Example:
● If we have an algorithm that determines whether 

there is a path shorter than a given value, we can 
determine the length of the shortest path by using 
that algorithm:
– Call the decision algorithm many times, until we “narrow 

down” the length of the shortest path:
● The algorithm outputs NO when asked whether there is a path 

shorter than 10, and outputs YES when asked whether there is a 
path shorter than 11 — we have our answer ! 
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● This justifies the use of decision problems in 
the theoretical study of algorithms and 
complexities:
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● This justifies the use of decision problems in 
the theoretical study of algorithms and 
complexities:
● If we show that a decision problem is hard 

(intractable), then that automatically shows that the 
associated optimization or computational problem is 
also hard  (since the decision problem reduces to 
the other one)
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● Next, let's look at the sets, or complexity 
classes, P and NP
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we'll skip those and go for the somewhat 
practical definitions...



  

NP-Completeness

● The formal definitions are quite involved, so 
we'll skip those and go for the somewhat 
practical definitions...
● The complexity class P is the set of (decision) 

problems that can be decided in polynomial time.



  

NP-Completeness

● The formal definitions are quite involved, so 
we'll skip those and go for the somewhat 
practical definitions...
● The complexity class P is the set of (decision) 

problems that can be decided in polynomial time.
– That is, the problems for which a polynomial time 

algorithm exists that solves (decides) the problem.



  

NP-Completeness

● The formal definitions are quite involved, so 
we'll skip those and go for the somewhat 
practical definitions...
● The complexity class P is the set of (decision) 

problems that can be decided in polynomial time.
– That is, the problems for which a polynomial time 

algorithm exists that solves (decides) the problem.

● Straightforward enough:  P stands for Polynomial 
time (so, we're talking about the set of Polynomial 
time decidable problems)
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(as in, random) machines, so here is the tricky part:
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● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in 
polynomial time using a nondeterministic machine!
 

● Now, we don't want to deal with nondeterministic 
(as in, random) machines, so here is the tricky part:

● It turns out that the above definition is equivalent to 
the following, more convenient one:
– NP is the set of decision problems that can be decided in 

polynomial time if provided with a certificate, typically  
corresponding to a solution to the associated optimization 
or computational problem.
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(i.e., polynomial time) verification algorithm.
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● The key detail here is counting on an efficient 
(i.e., polynomial time) verification algorithm.

● For example:  Determining whether a given 
graph has a Hamiltonian cycle is an NP 
problem:
● It can be efficiently verified — that is, if we're given 

a certificate claiming to be a Hamiltonian cycle for 
the graph, we can verify that claim in polynomial 
time.
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● The key detail here is counting on an efficient 
(i.e., polynomial time) verification algorithm.

● For example:  Determining whether a given 
graph has a Hamiltonian cycle is an NP 
problem:
● It can be efficiently verified — that is, if we're given 

a certificate claiming to be a Hamiltonian cycle for 
the graph, we can verify that claim in polynomial 
time  (we only need to verify that all the vertices are 
visited, that all edges correspond to existing edges, 
and that no vertex is visited more than once).
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● The key detail here is counting on an efficient 
(i.e., polynomial time) verification algorithm.

● The subset-sum problem is in NP as well:
● Given a certificate corresponding to the subset of 

values that add to 0 (or the given parameter, in the 
more general form of the problem), we can verify in 
linear time that they indeed add to 0.
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● Here's another tricky detail:  The set P    NP.
That is, if a problem can be decided in 
polynomial time, then it can be verified in 
polynomial time.

⊆
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● Here's another tricky detail:  The set P    NP.
That is, if a problem can be decided in 
polynomial time, then it can be verified in 
polynomial time.
● Just ignore the certificate — solve (decide) the 

problem in polynomial time, which can be done 
without the certificate, since the problem is in the 
set P.

⊆
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● Here's a big (tricky?) question:  Is NP    P?
● That is:  is every problem that can be efficiently 

verified also efficiently solved?
● Basic intuition obviously says NO:

– Think of finding a needle in a haystack vs. verifying that 
there is a needle at a location that we're told.

– Find the factorization of a number  vs.  verify that a set of 
numbers is the factorization of a given number.

⊆
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a problem and verifying a given solution.

● Some technologies even rely on this! 
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● We're used to this asymmetry between solving 
a problem and verifying a given solution.

● Some technologies even rely on this!  Modern 
cryptography, for example, relies on the 
asymmetry of discrete logarithm problem:  
given ax mod m, determine the value of x — the 
asymmetry being:  given x, it is trivial to obtain 

ax mod m, but given ax mod m, it is believed 
that finding x is an intractable problem)
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● Notice, BTW, that NP     P would imply that 
P = NP (i.e., that the two sets are the same), 
since P     NP 

⊆

⊆
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seem, whether P = NP is an unanswered 
question;  not only that:  it is considered the 
single most important open problem in 
theoretical computer science!
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● Despite this intuition, as obvious as it may 
seem, whether P = NP is an unanswered 
question;  not only that:  it is considered the 
single most important open problem in 
theoretical computer science!
● Perhaps the puzzling aspect is:  if it seems so 

obvious that P ≠ NP, why has no-one been able to  
mathematically prove it?
– Corollary:  if no-one, despite a lot of brilliant people trying 

really hard, has been able to prove it (that P ≠ NP), could 
it be because it is not true that P ≠ NP??
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● In short, a set of problems in NP that all reduce to 

each other!
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● NP-complete problems:
● In short, a set of problems in NP that all reduce to 

each other!
● Huh??  How could this happen???  (back to this in 

a minute)
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● NP-complete problems:
● In short, a set of problems in NP that all reduce to 

each other!
● One important implication is that these problems 

are all equivalent:
– If someone ever finds a polynomial time solution to one 

of them, then all of them have polynomial time solutions.
– Conversely, if someone ever proves that one of these 

problems is intractable, then we know that all of them are 
intractable.

● Corollary:  this would prove that P ≠ NP !!!
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● How do we prove that a given problem is 

NP complete?‑
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● NP-complete problems:
● How do we prove that a given problem is 

NP complete?‑
– If we can reduce any other problem XNPC known to be 

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC , 
and therefore to our given problem 
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● NP-complete problems:
● How do we prove that a given problem is 

NP complete?‑
– If we can reduce any other problem XNPC known to be 

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC , 
and therefore to our given problem
 

– Wait ...  That shows that every other NP-complete 
problem reduces to ours — how do we know that ours 
reduce to either one of the other NP-complete problems? 
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● NP-complete problems:
● How do we prove that a given problem is 

NP complete?‑
– Turns out that this detail has already been taken care of 

(that's how we know about this class of NP-complete 
problems to begin with!)

– So, we really only need to show that some problem 
known to be NP-complete reduces to ours in polynomial 
time, and that proves that ours is also NP-complete!
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● NP-complete problems:
● We'll complete this discussion next class — we'll go 

over the circuit satisfiability problem, which was the 
first one to be discovered to be NP-complete, and 
the one that “closes the loop” in our argument of 
“every one reduces to every other one”

● We'll also look at a few of the “classic” NP-complete 
problems and a couple of the reductions that prove 
their NP-completeness.
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