

NP-Completeness

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

To be or not to be

NP-Completeness

Standard reminder to set phones to
silent/vibrate mode, please!

NP-Completeness

● During today's lesson:
● Look at some important categorizations of

algorithms based on their run times.
– Including one important distinction: polynomial time vs.

exponential time.
● Look into the notion of decision problems, and their

relationship to an associated computation or
optimization problem.

● Introduce the sets P and NP.
● Introduce the notions of NP-hard and NP-complete

problems.

NP-Completeness

● For the purpose of this discussion, we will be
mostly interested in the distinction of polynomial
time algorithms vs. non-polynomial time
algorithms (exponential and above):

NP-Completeness

● For the purpose of this discussion, we will be
mostly interested in the distinction of polynomial
time algorithms vs. non-polynomial time
algorithms (exponential and above):
● Polynomial time: Algorithms with run time

for some .
O (nα

)
α > 0

NP-Completeness

● For the purpose of this discussion, we will be
mostly interested in the distinction of polynomial
time algorithms vs. non-polynomial time
algorithms (exponential and above):
● Polynomial time: Algorithms with run time

for some .

● Non-polynomial time: Algorithms with run time
 for some .

O (nα
)

α > 0

Ω(an) a > 1

NP-Completeness

● Examples of polynomial time:
● Constant time
● Logarithmic
● Linear time
● n log n
● Things like n², n³, n³ log n
● Etc.

NP-Completeness

● Examples of non-polynomial time:
● Exponentials (of any base): 2n, 10n, etc.
● n 2n

● n² 2n

● n!
● nn

● Etc.

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm

exists that solves the problem is called a tractable
problem.

● Otherwise, we refer to them as intractable
problems.

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm

exists that solves the problem is called a tractable
problem.

● Otherwise, we refer to them as intractable
problems.

● Notice the subtlety — a polynomial time algorithm
exists vs. a polynomial time algorithm is known.

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm

exists that solves the problem is called a tractable
problem.

● Otherwise, we refer to them as intractable
problems.

● Notice the subtlety — a polynomial time algorithm
exists vs. a polynomial time algorithm is known.
– We often see statements such as “this problem is

believed to be intractable” or “is considered intractable”,
meaning that no polynomial time algorithm is known, and
it is not known for sure that none exist, but it is believed
that none exist.

NP-Completeness

● An important notion related to these is that of
polynomial time reduction.

NP-Completeness

● An important notion related to these is that of
polynomial time reduction.
● We talked about reductions — solving problem A

using an algorithm that solves problem B.
– In this case, we say that A reduces to B.

NP-Completeness

● An important notion related to these is that of
polynomial time reduction.
● We talked about reductions — solving problem A

using an algorithm that solves problem B.
– In this case, we say that A reduces to B.
– Notice that we're applying the notion to the problems, and

not necessarily to the algorithms — solving problem A
reduces to being able to solve problem B.

NP-Completeness

● The reduction takes some time, since we need
to transform an instance of a problem into
another problem
● This typically refers to transforming the input of

algorithm A into a valid input for algorithm B, then
invoking algorithm B, capture its output and derive
(transform) the output for algorithm A.

NP-Completeness

● Relating to today's topic, since we're interested
in the distinction between polynomial time vs.
non-polynomial time algorithms, then the
relevant reductions are those with polynomial
run times:
● They will allow us to prove statements about an

algorithm having polynomial time or not.

NP-Completeness

● For example, given:

● If we know that TA(n) is non-polynomial and
we're trying to prove that TB(n) is also
non polynomial, then we need T‑ R(n) to be
polynomial — otherwise, the statement (the
equation) would say absolutely nothing about
TB(n) being or not polynomial.

TA(n) = TR (n) + TB(n)

NP-Completeness

● For example, given:

● On the other hand, if TB(n) is polynomial and
we're trying to show that we can find an
algorithm A with polynomial time TA(n) by
reducing A to B, then in this case we also need
TR(n) to be polynomial — otherwise, the above
equation says that TA(n) is non-polynomial, so
we've failed to find such polynomial time
algorithm A.

TA(n) = TR (n) + TB(n)

NP-Completeness

● Some times we refer to polynomial time
reduction as an efficient reduction.
● In this context, polynomial time is efficient,

non polynomial time is inefficient.‑

NP-Completeness

● Notation:

NP-Completeness

● Notation:
● If problem A reduces to problem B, that means that

solving A can not be harder than solving B.

NP-Completeness

● Notation:
● If problem A reduces to problem B, that means that

solving A can not be harder than solving B.
● This is denoted by: A⩽P B

NP-Completeness

● Notation:
● If problem A reduces to problem B, that means that

solving A can not be harder than solving B.
● This is denoted by:
● We read it as: A polynomial-time-reduces-to B (or

A reduces to B in polynomial time)

A⩽P B

NP-Completeness

● Notice that if :
● We can not know whether A is easier (more

efficient) than B or equally as hard — the only thing
that we know is that A is, at most, as hard as B,
since we can always use B to solve A.

A⩽P B

NP-Completeness

● Notice that if :
● We can not know whether A is easier (more

efficient) than B or equally as hard — the only thing
that we know is that A is, at most, as hard as B,
since we can always use B to solve A.

● But there could always be some other way of
solving A which is more efficient — the fact that we
find a reduction from A to B says nothing about that.

A⩽P B

NP-Completeness

● A fascinating class of questions on algorithmic
theory arises when we consider decision
problems and their complexity.

NP-Completeness

● A fascinating class of questions on algorithmic
theory arises when we consider decision
problems and their complexity.

● A decision problem is simply a problem with a
yes/no answer
● An algorithm that solves a decision problem outputs

a boolean value.

NP-Completeness

● A fascinating class of questions on algorithmic
theory arises when we consider decision
problems and their complexity.

● A decision problem is simply a problem with a
yes/no answer
● An algorithm that solves a decision problem outputs

a boolean value.
● Notice the interesting detail: when reducing a

decision problem to another decision problem, we
only need to do a transformation for the input — the
output for both algorithms is already compatible (at
most, we may need to negate the output)

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.
● Examples:
● Decision problem: Determine whether a given

graph has a Hamiltonian cycle

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.
● Examples:
● Decision problem: Determine whether a given

graph has a Hamiltonian cycle
– Related computational problem: Find a Hamiltonian

cycle (if there is one) in a given graph.

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.
● Examples:
● Decision problem: Determine whether a given

graph has a Hamiltonian cycle
– Related computational problem: Find a Hamiltonian

cycle (if there is one) in a given graph.
● Decision problem: Given two vertices in a given

graph, is there a path between them shorter than a
given value k?
– Optimization problem: Find the shortest path.

NP-Completeness

● The decision problem always reduces to its
associated optimization or computational
problem

NP-Completeness

● The decision problem always reduces to its
associated optimization or computational
problem — examples:
● We can solve the problem of determining whether

there is a path shorter than k if we have an
algorithm that finds the shortest path — simply
invoke that algorithm, look at its output and check
whether the shortest path's length is less than k.

NP-Completeness

● The decision problem always reduces to its
associated optimization or computational
problem — examples:
● We can solve the problem of determining whether

there is a path shorter than k if we have an
algorithm that finds the shortest path — simply
invoke that algorithm, look at its output and check
whether the shortest path's length is less than k.

● We can determine whether a graph has a
Hamiltonian cycle if we have an algorithm that finds
a Hamiltonian cycle in a graph.

NP-Completeness

● The converse is often true as well — the
optimization or computational problem can
often be reduced to the decision problem.

NP-Completeness

● The converse is often true as well — the
optimization or computational problem can
often be reduced to the decision problem.
Example:
● If we have an algorithm that determines whether

there is a path shorter than a given value, we can
determine the length of the shortest path by using
that algorithm:

NP-Completeness

● The converse is often true as well — the
optimization or computational problem can
often be reduced to the decision problem.
Example:
● If we have an algorithm that determines whether

there is a path shorter than a given value, we can
determine the length of the shortest path by using
that algorithm:
– Call the decision algorithm many times, until we “narrow

down” the length of the shortest path:
● The algorithm outputs NO when asked whether there is a path

shorter than 10, and outputs YES when asked whether there is a
path shorter than 11 — we have our answer !

NP-Completeness

● This justifies the use of decision problems in
the theoretical study of algorithms and
complexities:

NP-Completeness

● This justifies the use of decision problems in
the theoretical study of algorithms and
complexities:
● If we show that a decision problem is hard

(intractable), then that automatically shows that the
associated optimization or computational problem is
also hard (since the decision problem reduces to
the other one)

NP-Completeness

● Next, let's look at the sets, or complexity
classes, P and NP

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...
● The complexity class P is the set of (decision)

problems that can be decided in polynomial time.

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...
● The complexity class P is the set of (decision)

problems that can be decided in polynomial time.
– That is, the problems for which a polynomial time

algorithm exists that solves (decides) the problem.

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...
● The complexity class P is the set of (decision)

problems that can be decided in polynomial time.
– That is, the problems for which a polynomial time

algorithm exists that solves (decides) the problem.

● Straightforward enough: P stands for Polynomial
time (so, we're talking about the set of Polynomial
time decidable problems)

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in
polynomial time using a nondeterministic machine!

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in
polynomial time using a nondeterministic machine!

● Now, we don't want to deal with nondeterministic
(as in, random) machines, so here is the tricky part:

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in
polynomial time using a nondeterministic machine!

● Now, we don't want to deal with nondeterministic
(as in, random) machines, so here is the tricky part:

● It turns out that the above definition is equivalent to
the following, more convenient one:
– NP is the set of decision problems that can be decided in

polynomial time if provided with a certificate, typically
corresponding to a solution to the associated optimization
or computational problem.

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

● For example: Determining whether a given
graph has a Hamiltonian cycle is an NP
problem:
● It can be efficiently verified — that is, if we're given

a certificate claiming to be a Hamiltonian cycle for
the graph, we can verify that claim in polynomial
time.

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

● For example: Determining whether a given
graph has a Hamiltonian cycle is an NP
problem:
● It can be efficiently verified — that is, if we're given

a certificate claiming to be a Hamiltonian cycle for
the graph, we can verify that claim in polynomial
time (we only need to verify that all the vertices are
visited, that all edges correspond to existing edges,
and that no vertex is visited more than once).

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

● The subset-sum problem is in NP as well:
● Given a certificate corresponding to the subset of

values that add to 0 (or the given parameter, in the
more general form of the problem), we can verify in
linear time that they indeed add to 0.

NP-Completeness

● Here's another tricky detail: The set P NP.
That is, if a problem can be decided in
polynomial time, then it can be verified in
polynomial time.

⊆

NP-Completeness

● Here's another tricky detail: The set P NP.
That is, if a problem can be decided in
polynomial time, then it can be verified in
polynomial time.
● Just ignore the certificate — solve (decide) the

problem in polynomial time, which can be done
without the certificate, since the problem is in the
set P.

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?
● Basic intuition obviously says NO:

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?
● Basic intuition obviously says NO:

– Think of finding a needle in a haystack vs. verifying that
there is a needle at a location that we're told.

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?
● Basic intuition obviously says NO:

– Think of finding a needle in a haystack vs. verifying that
there is a needle at a location that we're told.

– Find the factorization of a number vs. verify that a set of
numbers is the factorization of a given number.

⊆

NP-Completeness

● We're used to this asymmetry between solving
a problem and verifying a given solution.

● Some technologies even rely on this!

NP-Completeness

● We're used to this asymmetry between solving
a problem and verifying a given solution.

● Some technologies even rely on this! Modern
cryptography, for example, relies on the
asymmetry of discrete logarithm problem:

NP-Completeness

● We're used to this asymmetry between solving
a problem and verifying a given solution.

● Some technologies even rely on this! Modern
cryptography, for example, relies on the
asymmetry of discrete logarithm problem:
given ax mod m, determine the value of x — the
asymmetry being: given x, it is trivial to obtain

ax mod m, but given ax mod m, it is believed
that finding x is an intractable problem)

NP-Completeness

● Notice, BTW, that NP P would imply that
P = NP (i.e., that the two sets are the same),
since P NP

⊆

⊆

NP-Completeness

● Despite this intuition, as obvious as it may
seem, whether P = NP is an unanswered
question; not only that: it is considered the
single most important open problem in
theoretical computer science!

NP-Completeness

● Despite this intuition, as obvious as it may
seem, whether P = NP is an unanswered
question; not only that: it is considered the
single most important open problem in
theoretical computer science!
● Perhaps the puzzling aspect is: if it seems so

obvious that P ≠ NP, why has no-one been able to
mathematically prove it?

NP-Completeness

● Despite this intuition, as obvious as it may
seem, whether P = NP is an unanswered
question; not only that: it is considered the
single most important open problem in
theoretical computer science!
● Perhaps the puzzling aspect is: if it seems so

obvious that P ≠ NP, why has no-one been able to
mathematically prove it?
– Corollary: if no-one, despite a lot of brilliant people trying

really hard, has been able to prove it (that P ≠ NP), could
it be because it is not true that P ≠ NP??

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!
● Huh?? How could this happen???

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!
● Huh?? How could this happen??? (back to this in

a minute)

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!
● One important implication is that these problems

are all equivalent:
– If someone ever finds a polynomial time solution to one

of them, then all of them have polynomial time solutions.
– Conversely, if someone ever proves that one of these

problems is intractable, then we know that all of them are
intractable.

● Corollary: this would prove that P ≠ NP !!!

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑
– If we can reduce any other problem XNPC known to be

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC ,
and therefore to our given problem

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑
– If we can reduce any other problem XNPC known to be

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC ,
and therefore to our given problem

– Wait ... That shows that every other NP-complete
problem reduces to ours — how do we know that ours
reduce to either one of the other NP-complete problems?

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑
– Turns out that this detail has already been taken care of

(that's how we know about this class of NP-complete
problems to begin with!)

– So, we really only need to show that some problem
known to be NP-complete reduces to ours in polynomial
time, and that proves that ours is also NP-complete!

NP-Completeness

● NP-complete problems:
● We'll complete this discussion next class — we'll go

over the circuit satisfiability problem, which was the
first one to be discovered to be NP-complete, and
the one that “closes the loop” in our argument of
“every one reduces to every other one”

● We'll also look at a few of the “classic” NP-complete
problems and a couple of the reductions that prove
their NP-completeness.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

