

NP-Completeness

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

To be or not to be

NP-Completeness

Standard reminder to set phones to
silent/vibrate mode, please!

NP-Completeness

● During today's lesson:
● Look at some important categorizations of

algorithms based on their run times.
– Including one important distinction: polynomial time vs.

exponential time.
● Look into the notion of decision problems, and their

relationship to an associated computation or
optimization problem.

● Introduce the sets P and NP.
● Introduce the notions of NP-hard and NP-complete

problems.

NP-Completeness

● For the purpose of this discussion, we will be
mostly interested in the distinction of polynomial
time algorithms vs. non-polynomial time
algorithms (exponential and above):

NP-Completeness

● For the purpose of this discussion, we will be
mostly interested in the distinction of polynomial
time algorithms vs. non-polynomial time
algorithms (exponential and above):
● Polynomial time: Algorithms with run time

for some .
O (nα

)
α > 0

NP-Completeness

● For the purpose of this discussion, we will be
mostly interested in the distinction of polynomial
time algorithms vs. non-polynomial time
algorithms (exponential and above):
● Polynomial time: Algorithms with run time

for some .

● Non-polynomial time: Algorithms with run time
 for some .

O (nα
)

α > 0

Ω(an) a > 1

NP-Completeness

● Examples of polynomial time:
● Constant time
● Logarithmic
● Linear time
● n log n
● Things like n², n³, n³ log n
● Etc.

NP-Completeness

● Examples of non-polynomial time:
● Exponentials (of any base): 2n, 10n, etc.
● n 2n

● n² 2n

● n!
● nn

● Etc.

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm

exists that solves the problem is called a tractable
problem.

● Otherwise, we refer to them as intractable
problems.

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm

exists that solves the problem is called a tractable
problem.

● Otherwise, we refer to them as intractable
problems.

● Notice the subtlety — a polynomial time algorithm
exists vs. a polynomial time algorithm is known.

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm

exists that solves the problem is called a tractable
problem.

● Otherwise, we refer to them as intractable
problems.

● Notice the subtlety — a polynomial time algorithm
exists vs. a polynomial time algorithm is known.
– We often see statements such as “this problem is

believed to be intractable” or “is considered intractable”,
meaning that no polynomial time algorithm is known, and
it is not known for sure that none exist, but it is believed
that none exist.

NP-Completeness

● An important notion related to these is that of
polynomial time reduction.

NP-Completeness

● An important notion related to these is that of
polynomial time reduction.
● We talked about reductions — solving problem A

using an algorithm that solves problem B.
– In this case, we say that A reduces to B.

NP-Completeness

● An important notion related to these is that of
polynomial time reduction.
● We talked about reductions — solving problem A

using an algorithm that solves problem B.
– In this case, we say that A reduces to B.
– Notice that we're applying the notion to the problems, and

not necessarily to the algorithms — solving problem A
reduces to being able to solve problem B.

NP-Completeness

● The reduction takes some time, since we need
to transform an instance of a problem into
another problem
● This typically refers to transforming the input of

algorithm A into a valid input for algorithm B, then
invoking algorithm B, capture its output and derive
(transform) the output for algorithm A.

NP-Completeness

● Relating to today's topic, since we're interested
in the distinction between polynomial time vs.
non-polynomial time algorithms, then the
relevant reductions are those with polynomial
run times:
● They will allow us to prove statements about an

algorithm having polynomial time or not.

NP-Completeness

● For example, given:

● If we know that TA(n) is non-polynomial and
we're trying to prove that TB(n) is also
non polynomial, then we need T‑ R(n) to be
polynomial — otherwise, the statement (the
equation) would say absolutely nothing about
TB(n) being or not polynomial.

TA(n) = TR (n) + TB(n)

NP-Completeness

● For example, given:

● On the other hand, if TB(n) is polynomial and
we're trying to show that we can find an
algorithm A with polynomial time TA(n) by
reducing A to B, then in this case we also need
TR(n) to be polynomial — otherwise, the above
equation says that TA(n) is non-polynomial, so
we've failed to find such polynomial time
algorithm A.

TA(n) = TR (n) + TB(n)

NP-Completeness

● Some times we refer to polynomial time
reduction as an efficient reduction.
● In this context, polynomial time is efficient,

non polynomial time is inefficient.‑

NP-Completeness

● Notation:

NP-Completeness

● Notation:
● If problem A reduces to problem B, that means that

solving A can not be harder than solving B.

NP-Completeness

● Notation:
● If problem A reduces to problem B, that means that

solving A can not be harder than solving B.
● This is denoted by: A⩽P B

NP-Completeness

● Notation:
● If problem A reduces to problem B, that means that

solving A can not be harder than solving B.
● This is denoted by:
● We read it as: A polynomial-time-reduces-to B (or

A reduces to B in polynomial time)

A⩽P B

NP-Completeness

● Notice that if :
● We can not know whether A is easier (more

efficient) than B or equally as hard — the only thing
that we know is that A is, at most, as hard as B,
since we can always use B to solve A.

A⩽P B

NP-Completeness

● Notice that if :
● We can not know whether A is easier (more

efficient) than B or equally as hard — the only thing
that we know is that A is, at most, as hard as B,
since we can always use B to solve A.

● But there could always be some other way of
solving A which is more efficient — the fact that we
find a reduction from A to B says nothing about that.

A⩽P B

NP-Completeness

● A fascinating class of questions on algorithmic
theory arises when we consider decision
problems and their complexity.

NP-Completeness

● A fascinating class of questions on algorithmic
theory arises when we consider decision
problems and their complexity.

● A decision problem is simply a problem with a
yes/no answer
● An algorithm that solves a decision problem outputs

a boolean value.

NP-Completeness

● A fascinating class of questions on algorithmic
theory arises when we consider decision
problems and their complexity.

● A decision problem is simply a problem with a
yes/no answer
● An algorithm that solves a decision problem outputs

a boolean value.
● Notice the interesting detail: when reducing a

decision problem to another decision problem, we
only need to do a transformation for the input — the
output for both algorithms is already compatible (at
most, we may need to negate the output)

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.
● Examples:
● Decision problem: Determine whether a given

graph has a Hamiltonian cycle

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.
● Examples:
● Decision problem: Determine whether a given

graph has a Hamiltonian cycle
– Related computational problem: Find a Hamiltonian

cycle (if there is one) in a given graph.

NP-Completeness

● Many (perhaps most) of the decision problems
of interest are related to a computational or
optimization problem.
● Examples:
● Decision problem: Determine whether a given

graph has a Hamiltonian cycle
– Related computational problem: Find a Hamiltonian

cycle (if there is one) in a given graph.
● Decision problem: Given two vertices in a given

graph, is there a path between them shorter than a
given value k?
– Optimization problem: Find the shortest path.

NP-Completeness

● The decision problem always reduces to its
associated optimization or computational
problem

NP-Completeness

● The decision problem always reduces to its
associated optimization or computational
problem — examples:
● We can solve the problem of determining whether

there is a path shorter than k if we have an
algorithm that finds the shortest path — simply
invoke that algorithm, look at its output and check
whether the shortest path's length is less than k.

NP-Completeness

● The decision problem always reduces to its
associated optimization or computational
problem — examples:
● We can solve the problem of determining whether

there is a path shorter than k if we have an
algorithm that finds the shortest path — simply
invoke that algorithm, look at its output and check
whether the shortest path's length is less than k.

● We can determine whether a graph has a
Hamiltonian cycle if we have an algorithm that finds
a Hamiltonian cycle in a graph.

NP-Completeness

● The converse is often true as well — the
optimization or computational problem can
often be reduced to the decision problem.

NP-Completeness

● The converse is often true as well — the
optimization or computational problem can
often be reduced to the decision problem.
Example:
● If we have an algorithm that determines whether

there is a path shorter than a given value, we can
determine the length of the shortest path by using
that algorithm:

NP-Completeness

● The converse is often true as well — the
optimization or computational problem can
often be reduced to the decision problem.
Example:
● If we have an algorithm that determines whether

there is a path shorter than a given value, we can
determine the length of the shortest path by using
that algorithm:
– Call the decision algorithm many times, until we “narrow

down” the length of the shortest path:
● The algorithm outputs NO when asked whether there is a path

shorter than 10, and outputs YES when asked whether there is a
path shorter than 11 — we have our answer !

NP-Completeness

● This justifies the use of decision problems in
the theoretical study of algorithms and
complexities:

NP-Completeness

● This justifies the use of decision problems in
the theoretical study of algorithms and
complexities:
● If we show that a decision problem is hard

(intractable), then that automatically shows that the
associated optimization or computational problem is
also hard (since the decision problem reduces to
the other one)

NP-Completeness

● Next, let's look at the sets, or complexity
classes, P and NP

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...
● The complexity class P is the set of (decision)

problems that can be decided in polynomial time.

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...
● The complexity class P is the set of (decision)

problems that can be decided in polynomial time.
– That is, the problems for which a polynomial time

algorithm exists that solves (decides) the problem.

NP-Completeness

● The formal definitions are quite involved, so
we'll skip those and go for the somewhat
practical definitions...
● The complexity class P is the set of (decision)

problems that can be decided in polynomial time.
– That is, the problems for which a polynomial time

algorithm exists that solves (decides) the problem.

● Straightforward enough: P stands for Polynomial
time (so, we're talking about the set of Polynomial
time decidable problems)

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in
polynomial time using a nondeterministic machine!

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in
polynomial time using a nondeterministic machine!

● Now, we don't want to deal with nondeterministic
(as in, random) machines, so here is the tricky part:

NP-Completeness

● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in
polynomial time using a nondeterministic machine!

● Now, we don't want to deal with nondeterministic
(as in, random) machines, so here is the tricky part:

● It turns out that the above definition is equivalent to
the following, more convenient one:
– NP is the set of decision problems that can be decided in

polynomial time if provided with a certificate, typically
corresponding to a solution to the associated optimization
or computational problem.

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

● For example: Determining whether a given
graph has a Hamiltonian cycle is an NP
problem:
● It can be efficiently verified — that is, if we're given

a certificate claiming to be a Hamiltonian cycle for
the graph, we can verify that claim in polynomial
time.

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

● For example: Determining whether a given
graph has a Hamiltonian cycle is an NP
problem:
● It can be efficiently verified — that is, if we're given

a certificate claiming to be a Hamiltonian cycle for
the graph, we can verify that claim in polynomial
time (we only need to verify that all the vertices are
visited, that all edges correspond to existing edges,
and that no vertex is visited more than once).

NP-Completeness

● The key detail here is counting on an efficient
(i.e., polynomial time) verification algorithm.

● The subset-sum problem is in NP as well:
● Given a certificate corresponding to the subset of

values that add to 0 (or the given parameter, in the
more general form of the problem), we can verify in
linear time that they indeed add to 0.

NP-Completeness

● Here's another tricky detail: The set P NP.
That is, if a problem can be decided in
polynomial time, then it can be verified in
polynomial time.

⊆

NP-Completeness

● Here's another tricky detail: The set P NP.
That is, if a problem can be decided in
polynomial time, then it can be verified in
polynomial time.
● Just ignore the certificate — solve (decide) the

problem in polynomial time, which can be done
without the certificate, since the problem is in the
set P.

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?
● Basic intuition obviously says NO:

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?
● Basic intuition obviously says NO:

– Think of finding a needle in a haystack vs. verifying that
there is a needle at a location that we're told.

⊆

NP-Completeness

● Here's a big (tricky?) question: Is NP P?
● That is: is every problem that can be efficiently

verified also efficiently solved?
● Basic intuition obviously says NO:

– Think of finding a needle in a haystack vs. verifying that
there is a needle at a location that we're told.

– Find the factorization of a number vs. verify that a set of
numbers is the factorization of a given number.

⊆

NP-Completeness

● We're used to this asymmetry between solving
a problem and verifying a given solution.

● Some technologies even rely on this!

NP-Completeness

● We're used to this asymmetry between solving
a problem and verifying a given solution.

● Some technologies even rely on this! Modern
cryptography, for example, relies on the
asymmetry of discrete logarithm problem:

NP-Completeness

● We're used to this asymmetry between solving
a problem and verifying a given solution.

● Some technologies even rely on this! Modern
cryptography, for example, relies on the
asymmetry of discrete logarithm problem:
given ax mod m, determine the value of x — the
asymmetry being: given x, it is trivial to obtain

ax mod m, but given ax mod m, it is believed
that finding x is an intractable problem)

NP-Completeness

● Notice, BTW, that NP P would imply that
P = NP (i.e., that the two sets are the same),
since P NP

⊆

⊆

NP-Completeness

● Despite this intuition, as obvious as it may
seem, whether P = NP is an unanswered
question; not only that: it is considered the
single most important open problem in
theoretical computer science!

NP-Completeness

● Despite this intuition, as obvious as it may
seem, whether P = NP is an unanswered
question; not only that: it is considered the
single most important open problem in
theoretical computer science!
● Perhaps the puzzling aspect is: if it seems so

obvious that P ≠ NP, why has no-one been able to
mathematically prove it?

NP-Completeness

● Despite this intuition, as obvious as it may
seem, whether P = NP is an unanswered
question; not only that: it is considered the
single most important open problem in
theoretical computer science!
● Perhaps the puzzling aspect is: if it seems so

obvious that P ≠ NP, why has no-one been able to
mathematically prove it?
– Corollary: if no-one, despite a lot of brilliant people trying

really hard, has been able to prove it (that P ≠ NP), could
it be because it is not true that P ≠ NP??

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!
● Huh?? How could this happen???

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!
● Huh?? How could this happen??? (back to this in

a minute)

NP-Completeness

● NP-complete problems:
● In short, a set of problems in NP that all reduce to

each other!
● One important implication is that these problems

are all equivalent:
– If someone ever finds a polynomial time solution to one

of them, then all of them have polynomial time solutions.
– Conversely, if someone ever proves that one of these

problems is intractable, then we know that all of them are
intractable.

● Corollary: this would prove that P ≠ NP !!!

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑
– If we can reduce any other problem XNPC known to be

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC ,
and therefore to our given problem

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑
– If we can reduce any other problem XNPC known to be

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC ,
and therefore to our given problem

– Wait ... That shows that every other NP-complete
problem reduces to ours — how do we know that ours
reduce to either one of the other NP-complete problems?

NP-Completeness

● NP-complete problems:
● How do we prove that a given problem is

NP complete?‑
– Turns out that this detail has already been taken care of

(that's how we know about this class of NP-complete
problems to begin with!)

– So, we really only need to show that some problem
known to be NP-complete reduces to ours, and that
proves that ours is also NP-complete!

NP-Completeness

● NP-complete problems:
● It all goes back to the first problem discovered to be

NP-complete — the Circuit satisfiability problem:
– Given a combinational circuit (with logic gates AND, OR,

and NOT) with n inputs and a single output (a boolean
output), is there any combination of input values that
produces an output of 1? (a set of input values that
satisfies the logic given by the circuit)

NP-Completeness

● NP-complete problems:
● It all goes back to the first problem discovered to be

NP-complete — the Circuit satisfiability problem:
– Given a combinational circuit (with logic gates AND, OR,

and NOT) with n inputs and a single output (a boolean
output), is there any combination of input values that
produces an output of 1? (a set of input values that
satisfies the logic given by the circuit)

● We observe that the problem can be trivially solved in
exponential time — try all 2n possible combinations of n binary
values, checking whether the output is 1.

● It is not known, however, whether a polynomial time solution
exists (none is known, but no-one has been able to prove that
none exist)

NP-Completeness

● NP-complete problems:
● It all goes back to the first problem discovered to be

NP-complete — the Circuit satisfiability problem:
– It is also straightforward to see that this problem is NP

● If given a certificate consisting of a combination of 1 and 0's that
satisfies the circuit, we can verify it in polynomial time (there is
the implicit assumption that the number of logic gates is
polynomial with respect to the number of inputs)

NP-Completeness

● NP-complete problems:
● How is it that it was discovered that every problem

in NP reduces to the circuit satisfiability problem?

NP-Completeness

● NP-complete problems:
● How is it that it was discovered that every problem

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right?

(you guys saw ECE-124 and are now near completion of
ECE-222, so for you, this proof will be a piece of cake!)

NP-Completeness

● NP-complete problems:
● How is it that it was discovered that every problem

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right?

(you guys saw ECE-124 and are now near completion of
ECE-222, so for you, this proof will be a piece of cake!)

● Any problem that is in NP has an efficient verification algorithm.

NP-Completeness

● NP-complete problems:
● How is it that it was discovered that every problem

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right?

(you guys saw ECE-124 and are now near completion of
ECE-222, so for you, this proof will be a piece of cake!)

● Any problem that is in NP has an efficient verification algorithm.
● That algorithm can be implemented in a digital computer.

NP-Completeness

● NP-complete problems:
● How is it that it was discovered that every problem

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right?

(you guys saw ECE-124 and are now near completion of
ECE-222, so for you, this proof will be a piece of cake!)

● Any problem that is in NP has an efficient verification algorithm.
● That algorithm can be implemented in a digital computer.
● Because the verification occurs in polynomial time, then that

means that the algorithm will complete execution in a polynomial
number of clock cycles.

NP-Completeness

● NP-complete problems:
● How is it that it was discovered that every problem

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right?

(you guys saw ECE-124 and are now near completion of
ECE-222, so for you, this proof will be a piece of cake!)

● Any problem that is in NP has an efficient verification algorithm.
● That algorithm can be implemented in a digital computer.
● Because the verification occurs in polynomial time, then that

means that the algorithm will complete execution in a polynomial
number of clock cycles.

● ... Anyone sees where this is going?

NP-Completeness

● NP-complete problems:
● A digital computer has a state, represented by all of

its internal registers (the ones that are “visible” to
the user through the ISA, and the ones that aren't;
i.e., the ones that are part of the control circuitry)

● At each clock cycle, a huge (but fixed-size) set of
combinational circuits map the current state to the
next state.
– States are “captured” at each clock edge by the arrays of

flip-flops (the registers), and then the outputs of these
registers are fed to the combinational circuits to
determine the next state.

NP-Completeness

● NP-complete problems:
● So, I'll ask again: anyone sees where this is going?

NP-Completeness

● NP-complete problems:
● We could construct a circuit that “executes” the

entire algorithm by eliminating the clock and the
registers that provide a “state”, and instead, simply
put multiple copies (stages) of the combinational
circuits that determine the next state.

NP-Completeness

● NP-complete problems:
● We could construct a circuit that “executes” the

entire algorithm by eliminating the clock and the
registers that provide a “state”, and instead, simply
put multiple copies (stages) of the combinational
circuits that determine the next state.
– The output of each stage (representing the next state) is

not fed back to registers that will capture the value:
instead, that output is directly fed as input to the next
stage of combinational circuits.

NP-Completeness

● NP-complete problems:

CLRS, Fig. 34.9

NP-Completeness

● NP-complete problems:
● Bottom line: for any given NP problem, we can

implement the the verification procedure, and from
there, generate a combinational circuit that
“executes” it sort of instantaneously (plus-minus
circuits response time and signals propagation
time).

NP-Completeness

● NP-complete problems:
● Bottom line: for any given NP problem, we can

implement the the verification procedure, and from
there, generate a combinational circuit that
“executes” it sort of instantaneously (plus-minus
circuits response time and signals propagation
time).

● If the output of that circuit is 1 for a given input, then
that input verifies the problem.
– So, if we could solve the circuit satisfiability problem in

polynomial time, then we would be able to find a solution
to any problem for which a solution can be verified in
polynomial time.

NP-Completeness

● NP-complete problems:
● Recall that a solution to circuit-sat tells you whether

there exists a combination of ones and zeros that
produces a 1 as the output.

● But that output is the solution to the other NP
problem.

NP-Completeness

● NP-complete problems:
● Recall that a solution to circuit-sat tells you whether

there exists a combination of ones and zeros that
produces a 1 as the output.

● But that output is the solution to the other NP
problem.

● Important detail: the number of stages in that huge
circuit is the number of clock cycles that the
algorithm takes — since we're talking about NP
problems, then that number of cycles is polynomial,
and thus the number of logic gates will be
polynomial with respect to the size of the input!

NP-Completeness

● NP-complete problems:
● Bottom line (as in, the real bottom line): this

construction shows that every NP problem reduces
to the circuit satisfiability problem!

NP-Completeness

● NP-complete problems:
● Bottom line (as in, the real bottom line): this

construction shows that every NP problem reduces
to the circuit satisfiability problem!

● That means that this problem is at least as hard as
every other problem in NP — thus, it is at least as
hard as the hardest problem(s) in NP

NP-Completeness

● NP-complete problems:
● Bottom line (as in, the real bottom line): this

construction shows that every NP problem reduces
to the circuit satisfiability problem!

● That means that this problem is at least as hard as
every other problem in NP — thus, it is at least as
hard as the hardest problem(s) in NP
– This is the definition of an NP-hard problem: A problem

such that every problem in NP can be reduced to it.

NP-Completeness

● NP-complete problems:
● Bottom line (as in, the real bottom line): this

construction shows that every NP problem reduces
to the circuit satisfiability problem!

● That means that this problem is at least as hard as
every other problem in NP — thus, it is at least as
hard as the hardest problem(s) in NP
– This is the definition of an NP-hard problem: A problem

such that every problem in NP can be reduced to it.
– Notice that an NP-hard problem does not have to be in

NP (it doesn't even need to be a decision problem!)
● An NP-complete problem is an NP-hard problem that is NP

NP-Completeness

● NP-complete problems — the complete picture:
● Circuit-sat was the firts problem to be shown to be

NP-hard; since it clearly is NP, then that makes it
NP complete.‑

NP-Completeness

● NP-complete problems — the complete picture:
● Circuit-sat was the firts problem to be shown to be

NP-hard; since it clearly is NP, then that makes it
NP complete.‑

● If we can reduce circuit-sat to any other NP
problem, that would make that other problem
equivalent to circuit-sat — since circuit-sat reduces
to that problem, but we know that that problem
reduces to circuit-sat

NP-Completeness

● NP-complete problems — the complete picture:
● Circuit-sat was the firts problem to be shown to be

NP-hard; since it clearly is NP, then that makes it
NP complete.‑

● If we can reduce circuit-sat to any other NP
problem, that would make that other problem
equivalent to circuit-sat — since circuit-sat reduces
to that problem, but we know that that problem
reduces to circuit-sat
– So, circuit-sat really “closes the loop” that ties every

NP complete problem to every other NP-complete ‑
problem: solving either one solves every one.

NP-Completeness

● NP-complete problems — the complete picture:

CLRS, Fig. 34.13

NP-Completeness

● For example, the Travelling Salesman Problem
(TSP) is a surprisingly ubiquitous problem (it
shows up in many optimization problems, in
pattern recognition, circuit design, DNA
sequencing, economics, etc.)

NP-Completeness

● For example, the Travelling Salesman Problem
(TSP) is a surprisingly ubiquitous problem (it
shows up in many optimization problems, in
pattern recognition, circuit design, DNA
sequencing, economics, etc.)
● Given a complete weighted graph (a graph for

which every vertex is adjacent to every other
vertex), is there a path of length less than or equal
to a given parameter k that visits each vertex
exactly once returning to the starting vertex?

NP-Completeness

● For example, the Travelling Salesman Problem
(TSP) is a surprisingly ubiquitous problem (it
shows up in many optimization problems, in
pattern recognition, circuit design, DNA
sequencing, economics, etc.)
● Given a complete weighted graph (a graph for

which every vertex is adjacent to every other
vertex), is there a path of length less than or equal
to a given parameter k that visits each vertex
exactly once returning to the starting vertex?
– The related optimization problem being: find the shortest

path that visits each vertex exactly once returning to the
first one.

NP-Completeness

● Side note:
● In its original formulation, the problem is given n

cities with pairwise distances, find the shortest
itinerary that visits each city exactly once and
returns to the starting city. (but this immediately
translates into the more abstract formulation with a
complete graph)

NP-Completeness

● TSP is obviously NP — if we're given a solution
consisting of a path that meets the
requirements, we can easily verify that each
vertex is visited exactly once, and we can easily
compute the length of the path and verify that it
is less than or equal to k.

NP-Completeness

● Reducing the Hamiltonian cycle problem to TSP
is surprisingly straightforward:

NP-Completeness

● Reducing the Hamiltonian cycle problem to TSP
is surprisingly straightforward:
● Given a graph G, construct a complete weighted

graph G' that has the same vertices as G, and such
that for every pair of vertices (u,v), the edge (u,v) in
G' has weight 0 if the edge (u,v) is present in G,
and weight 1 otherwise.

NP-Completeness

● Reducing the Hamiltonian cycle problem to TSP
is surprisingly straightforward:
● Given a graph G, construct a complete weighted

graph G' that has the same vertices as G, and such
that for every pair of vertices (u,v), the edge (u,v) in
G' has weight 0 if the edge (u,v) is present in G,
and weight 1 otherwise.
– Then, we ask the algorithm that decides TSP whether

there is a path of length 0 in G' that visits each vertex
exactly once.

NP-Completeness

● Reducing the Hamiltonian cycle problem to TSP
is surprisingly straightforward:
● Given a graph G, construct a complete weighted

graph G' that has the same vertices as G, and such
that for every pair of vertices (u,v), the edge (u,v) in
G' has weight 0 if the edge (u,v) is present in G,
and weight 1 otherwise.
– Then, we ask the algorithm that decides TSP whether

there is a path of length 0 in G' that visits each vertex
exactly once... Anyone sees why this works?

NP-Completeness

● Reducing the Hamiltonian cycle problem to TSP
is surprisingly straightforward:
● Given a graph G, construct a complete weighted

graph G' that has the same vertices as G, and such
that for every pair of vertices (u,v), the edge (u,v) in
G' has weight 0 if the edge (u,v) is present in G,
and weight 1 otherwise.
– Then, we ask the algorithm that decides TSP whether

there is a path of length 0 in G' that visits each vertex
exactly once... Anyone sees why this works?

● If there is, then it means that only edges with weight 0 could
have been used — but those are edges that are present in G,
and so if there is such a path in G', then there is a Hamiltonian
cycle in G.

NP-Completeness

● The clique and vertex cover are also related by
a simple construction:

NP-Completeness

● The clique and vertex cover are also related by
a simple construction:
● Clique problem: a clique is a sub-graph in which

every vertex is connected to every other vertex.
The clique problem being: given a graph, is there a
clique in it? (or, is there a clique of at least k
vertices?)

NP-Completeness

● The clique and vertex cover are also related by
a simple construction:
● Clique problem: a clique is a sub-graph in which

every vertex is connected to every other vertex.
The clique problem being: given a graph, is there a
clique in it? (or, is there a clique of at least k
vertices?)

● Vertex cover: a vertex cover is a sub-graph such
that every vertex in the graph is adjacent to some
vertex or vertices in that sub-graph (so, that subset
of vertices “covers” the entire graph)

NP-Completeness

● The reduction is not as trivial as Hamiltonian
cycle to TSP, but it is still remarkably simple:
● Given a graph G, we construct a graph G' with the

same set of vertices, and where the set of edges is
the complement of the set of edges in G (every
edge present in G is missing in G' and every edge
missing in G is present in G').

NP-Completeness

● The reduction is not as trivial as Hamiltonian
cycle to TSP, but it is still remarkably simple:
● Given a graph G, we construct a graph G' with the

same set of vertices, and where the set of edges is
the complement of the set of edges in G (every
edge present in G is missing in G' and every edge
missing in G is present in G').
– It can be shown that G has a clique of size k if and only if

G' has a vertex cover of size n−k.
– This property provides the sought reduction.

NP-Completeness

● Big picture:
● Why are these notions relevant for us, engineers?

NP-Completeness

● Big picture:
● Why are these notions relevant for us, engineers?

● Instances of these problems or problems similar to
them tend to show up very often in engineering (not
only in software!!).

NP-Completeness

● Big picture:
● Why are these notions relevant for us, engineers?

● Instances of these problems or problems similar to
them tend to show up very often in engineering (not
only in software!!).

● If a problem is NP-complete, we don't know that no
efficient solution exists, but no-one knows of an
efficient solution for either one of these problems,
and it is believed that none exist!

NP-Completeness

● Big picture:
● Why are these notions relevant for us, engineers?

● As engineers, knowing about these problems (and
knowing which problems are NP-complete) can
save us lots of time — time which could have
otherwise wasted looking for an algorithm to solve a
problem which is extremely unlikely (virtually
impossible) that we would find a solution!

NP-Completeness

● Big picture:
● Why are these notions relevant for us, engineers?

● As engineers, knowing about these problems (and
knowing which problems are NP-complete) can
save us lots of time — time which could have
otherwise wasted looking for an algorithm to solve a
problem which is extremely unlikely (virtually
impossible) that we would find a solution!

● Plus, c'mon — this has to be in the category of
all time most awesome ideas ... ever‑ !!

NP-Completeness

● Big picture:
● Why are these notions relevant for us, engineers?

● As engineers, knowing about these problems (and
knowing which problems are NP-complete) can
save us lots of time — time which could have
otherwise wasted looking for an algorithm to solve a
problem which is extremely unlikely (virtually
impossible) that we would find a solution!

● Plus, c'mon — this has to be in the category of
all time most awesome ideas ... ever‑ !!
– So, who was worried about a shortage of coolness in this

course? :-)

Summary

● During today's lesson:
● Categorized problems as polynomial time

(tractable) vs. non-polynomial time (intractable).
● Looked into the notion of decision problems, and

their relationship to an associated computation or
optimization problem.

● Introduced the sets P and NP, and the big,
mysterious, open question: Is P = NP?

● Introduced the notions of NP-hard and NP-complete
problems.

● Argued about the relevance of these notions in a
practical setting (for an engineer)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123

