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● During today's lesson:
● Look at some important categorizations of 

algorithms based on their run times.
– Including one important distinction:  polynomial time vs. 

exponential time.
● Look into the notion of decision problems, and their 

relationship to an associated computation or 
optimization problem.

● Introduce the sets P and NP.
● Introduce the notions of NP-hard and NP-complete 

problems.
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mostly interested in the distinction of polynomial 
time algorithms vs. non-polynomial time 
algorithms (exponential and above):
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● For the purpose of this discussion, we will be 
mostly interested in the distinction of polynomial 
time algorithms vs. non-polynomial time 
algorithms (exponential and above):
● Polynomial time:  Algorithms with run time

for some            .
 

● Non-polynomial time:  Algorithms with run time
           for some          .

O (nα
)

α > 0

Ω(an) a > 1
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● Examples of polynomial time:
● Constant time
● Logarithmic
● Linear time
● n log n
● Things like n², n³, n³ log n
● Etc.
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● Examples of non-polynomial time:
● Exponentials (of any base):  2n, 10n, etc.
● n 2n

● n² 2n

● n!
● nn

● Etc.
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● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm 

exists that solves the problem is called a tractable 
problem.

● Otherwise, we refer to them as intractable 
problems.



  

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm 

exists that solves the problem is called a tractable 
problem.

● Otherwise, we refer to them as intractable 
problems.

● Notice the subtlety — a polynomial time algorithm 
exists  vs.  a polynomial time algorithm is known.



  

NP-Completeness

● Tractable vs. intractable problems:
● A problem for which a polynomial time algorithm 

exists that solves the problem is called a tractable 
problem.

● Otherwise, we refer to them as intractable 
problems.

● Notice the subtlety — a polynomial time algorithm 
exists  vs.  a polynomial time algorithm is known.
– We often see statements such as  “this problem is 

believed to be intractable”  or  “is considered intractable”, 
meaning that no polynomial time algorithm is known, and 
it is not known for sure that none exist, but it is believed 
that none exist.
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● An important notion related to these is that of 
polynomial time reduction.
● We talked about reductions — solving problem A 

using an algorithm that solves problem B.
– In this case, we say that A reduces to B.
– Notice that we're applying the notion to the problems, and 

not necessarily to the algorithms — solving problem A 
reduces to being able to solve problem B.
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● The reduction takes some time, since we need 
to transform an instance of a problem into 
another problem
● This typically refers to transforming the input of  

algorithm A into a valid input for algorithm B, then 
invoking algorithm B, capture its output and derive 
(transform) the output for algorithm A.
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● Relating to today's topic, since we're interested 
in the distinction between polynomial time vs. 
non-polynomial time algorithms, then the 
relevant reductions are those with polynomial 
run times:
● They will allow us to prove statements about an 

algorithm having polynomial time or not.
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● For example, given:

● If we know that TA(n) is non-polynomial and 
we're trying to prove that TB(n) is also 
non polynomial, then we need T‑ R(n) to be 
polynomial — otherwise, the statement (the 
equation) would say absolutely nothing about 
TB(n) being or not polynomial.

TA(n) = TR (n) + TB(n)
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● For example, given:

● On the other hand, if TB(n) is polynomial and 
we're trying to show that we can find an 
algorithm A with polynomial time TA(n) by 
reducing A to B, then in this case we also need 
TR(n) to be polynomial — otherwise, the above 
equation says that TA(n) is non-polynomial, so 
we've failed to find such polynomial time 
algorithm A.

TA(n) = TR (n) + TB(n)
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● Some times we refer to polynomial time 
reduction as an efficient reduction.
● In this context, polynomial time is efficient, 

non polynomial time is inefficient.‑
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● Notation:
● If problem A reduces to problem B, that means that 

solving A can not be harder than solving B.
● This is denoted by:  
● We read it as:  A polynomial-time-reduces-to B  (or  

A reduces to B in polynomial time)

A⩽P B
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● Notice that if            :
● We can not know whether A is easier (more 

efficient) than B or equally as hard — the only thing 
that we know is that A is, at most, as hard as B, 
since we can always use B to solve A.

A⩽P B
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● Notice that if            :
● We can not know whether A is easier (more 

efficient) than B or equally as hard — the only thing 
that we know is that A is, at most, as hard as B, 
since we can always use B to solve A.

● But there could always be some other way of 
solving A which is more efficient — the fact that we 
find a reduction from A to B says nothing about that.

A⩽P B
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problems and their complexity.
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● A fascinating class of questions on algorithmic 
theory arises when we consider decision 
problems and their complexity.

● A decision problem is simply a problem with a 
yes/no answer
● An algorithm that solves a decision problem outputs 

a boolean value.
● Notice the interesting detail:  when reducing a 

decision problem to another decision problem, we 
only need to do a transformation for the input — the 
output for both algorithms is already compatible (at 
most, we may need to negate the output)
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of interest are related to a computational or 
optimization problem.



  

NP-Completeness

● Many (perhaps most) of the decision problems 
of interest are related to a computational or 
optimization problem.
● Examples:
● Decision problem:  Determine whether a given 

graph has a Hamiltonian cycle



  

NP-Completeness
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● Many (perhaps most) of the decision problems 
of interest are related to a computational or 
optimization problem.
● Examples:
● Decision problem:  Determine whether a given 

graph has a Hamiltonian cycle
– Related computational problem:  Find a Hamiltonian 

cycle (if there is one) in a given graph.
● Decision problem:  Given two vertices in a given 

graph, is there a path between them shorter than a 
given value k?
– Optimization problem:  Find the shortest path.
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● The decision problem always reduces to its 
associated optimization or computational 
problem



  

NP-Completeness

● The decision problem always reduces to its 
associated optimization or computational 
problem — examples:
● We can solve the problem of determining whether 

there is a path shorter than k if we have an 
algorithm that finds the shortest path — simply 
invoke that algorithm, look at its output and check 
whether the shortest path's length is less than k.
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● The decision problem always reduces to its 
associated optimization or computational 
problem — examples:
● We can solve the problem of determining whether 

there is a path shorter than k if we have an 
algorithm that finds the shortest path — simply 
invoke that algorithm, look at its output and check 
whether the shortest path's length is less than k.

● We can determine whether a graph has a 
Hamiltonian cycle if we have an algorithm that finds 
a Hamiltonian cycle in a graph.
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optimization or computational problem can 
often be reduced to the decision problem.
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that algorithm:
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● The converse is often true as well — the 
optimization or computational problem can 
often be reduced to the decision problem.  
Example:
● If we have an algorithm that determines whether 

there is a path shorter than a given value, we can 
determine the length of the shortest path by using 
that algorithm:
– Call the decision algorithm many times, until we “narrow 

down” the length of the shortest path:
● The algorithm outputs NO when asked whether there is a path 

shorter than 10, and outputs YES when asked whether there is a 
path shorter than 11 — we have our answer ! 
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● This justifies the use of decision problems in 
the theoretical study of algorithms and 
complexities:
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● This justifies the use of decision problems in 
the theoretical study of algorithms and 
complexities:
● If we show that a decision problem is hard 

(intractable), then that automatically shows that the 
associated optimization or computational problem is 
also hard  (since the decision problem reduces to 
the other one)
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● Next, let's look at the sets, or complexity 
classes, P and NP
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we'll skip those and go for the somewhat 
practical definitions...
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● The formal definitions are quite involved, so 
we'll skip those and go for the somewhat 
practical definitions...
● The complexity class P is the set of (decision) 

problems that can be decided in polynomial time.
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algorithm exists that solves (decides) the problem.
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● The formal definitions are quite involved, so 
we'll skip those and go for the somewhat 
practical definitions...
● The complexity class P is the set of (decision) 

problems that can be decided in polynomial time.
– That is, the problems for which a polynomial time 

algorithm exists that solves (decides) the problem.

● Straightforward enough:  P stands for Polynomial 
time (so, we're talking about the set of Polynomial 
time decidable problems)
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(as in, random) machines, so here is the tricky part:
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● The complexity class NP is a bit trickier:
● NP stands for Nondeterministic Polynomial time

– The set of (decision) problems that can be decided in 
polynomial time using a nondeterministic machine!
 

● Now, we don't want to deal with nondeterministic 
(as in, random) machines, so here is the tricky part:

● It turns out that the above definition is equivalent to 
the following, more convenient one:
– NP is the set of decision problems that can be decided in 

polynomial time if provided with a certificate, typically  
corresponding to a solution to the associated optimization 
or computational problem.
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(i.e., polynomial time) verification algorithm.
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● The key detail here is counting on an efficient 
(i.e., polynomial time) verification algorithm.

● For example:  Determining whether a given 
graph has a Hamiltonian cycle is an NP 
problem:
● It can be efficiently verified — that is, if we're given 

a certificate claiming to be a Hamiltonian cycle for 
the graph, we can verify that claim in polynomial 
time.
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● The key detail here is counting on an efficient 
(i.e., polynomial time) verification algorithm.

● For example:  Determining whether a given 
graph has a Hamiltonian cycle is an NP 
problem:
● It can be efficiently verified — that is, if we're given 

a certificate claiming to be a Hamiltonian cycle for 
the graph, we can verify that claim in polynomial 
time  (we only need to verify that all the vertices are 
visited, that all edges correspond to existing edges, 
and that no vertex is visited more than once).
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● The key detail here is counting on an efficient 
(i.e., polynomial time) verification algorithm.

● The subset-sum problem is in NP as well:
● Given a certificate corresponding to the subset of 

values that add to 0 (or the given parameter, in the 
more general form of the problem), we can verify in 
linear time that they indeed add to 0.
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● Here's another tricky detail:  The set P    NP.
That is, if a problem can be decided in 
polynomial time, then it can be verified in 
polynomial time.

⊆
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● Here's another tricky detail:  The set P    NP.
That is, if a problem can be decided in 
polynomial time, then it can be verified in 
polynomial time.
● Just ignore the certificate — solve (decide) the 

problem in polynomial time, which can be done 
without the certificate, since the problem is in the 
set P.

⊆
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there is a needle at a location that we're told.
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● Here's a big (tricky?) question:  Is NP    P?
● That is:  is every problem that can be efficiently 

verified also efficiently solved?
● Basic intuition obviously says NO:

– Think of finding a needle in a haystack vs. verifying that 
there is a needle at a location that we're told.

– Find the factorization of a number  vs.  verify that a set of 
numbers is the factorization of a given number.

⊆
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a problem and verifying a given solution.

● Some technologies even rely on this! 
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● We're used to this asymmetry between solving 
a problem and verifying a given solution.

● Some technologies even rely on this!  Modern 
cryptography, for example, relies on the 
asymmetry of discrete logarithm problem:  
given ax mod m, determine the value of x — the 
asymmetry being:  given x, it is trivial to obtain 

ax mod m, but given ax mod m, it is believed 
that finding x is an intractable problem)
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● Notice, BTW, that NP     P would imply that 
P = NP (i.e., that the two sets are the same), 
since P     NP 

⊆

⊆
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seem, whether P = NP is an unanswered 
question;  not only that:  it is considered the 
single most important open problem in 
theoretical computer science!
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● Despite this intuition, as obvious as it may 
seem, whether P = NP is an unanswered 
question;  not only that:  it is considered the 
single most important open problem in 
theoretical computer science!
● Perhaps the puzzling aspect is:  if it seems so 

obvious that P ≠ NP, why has no-one been able to  
mathematically prove it?
– Corollary:  if no-one, despite a lot of brilliant people trying 

really hard, has been able to prove it (that P ≠ NP), could 
it be because it is not true that P ≠ NP??
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● In short, a set of problems in NP that all reduce to 
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● NP-complete problems:
● In short, a set of problems in NP that all reduce to 

each other!
● Huh??  How could this happen???  (back to this in 

a minute)
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● NP-complete problems:
● In short, a set of problems in NP that all reduce to 

each other!
● One important implication is that these problems 

are all equivalent:
– If someone ever finds a polynomial time solution to one 

of them, then all of them have polynomial time solutions.
– Conversely, if someone ever proves that one of these 

problems is intractable, then we know that all of them are 
intractable.

● Corollary:  this would prove that P ≠ NP !!!
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● How do we prove that a given problem is 

NP complete?‑
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● NP-complete problems:
● How do we prove that a given problem is 

NP complete?‑
– If we can reduce any other problem XNPC known to be 

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC , 
and therefore to our given problem 
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● NP-complete problems:
● How do we prove that a given problem is 

NP complete?‑
– If we can reduce any other problem XNPC known to be 

NP complete, then we're done — every other ‑
NP complete problem reduces in polynomial time to ‑ XNPC , 
and therefore to our given problem
 

– Wait ...  That shows that every other NP-complete 
problem reduces to ours — how do we know that ours 
reduce to either one of the other NP-complete problems? 
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● NP-complete problems:
● How do we prove that a given problem is 

NP complete?‑
– Turns out that this detail has already been taken care of 

(that's how we know about this class of NP-complete 
problems to begin with!)

– So, we really only need to show that some problem 
known to be NP-complete reduces to ours, and that 
proves that ours is also NP-complete!
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● NP-complete problems:
● It all goes back to the first problem discovered to be 

NP-complete — the Circuit satisfiability problem:
– Given a combinational circuit (with logic gates AND, OR, 

and NOT) with n inputs and a single output (a boolean 
output), is there any combination of input values that 
produces an output of 1?  (a set of input values that 
satisfies the logic given by the circuit)
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● NP-complete problems:
● It all goes back to the first problem discovered to be 

NP-complete — the Circuit satisfiability problem:
– Given a combinational circuit (with logic gates AND, OR, 

and NOT) with n inputs and a single output (a boolean 
output), is there any combination of input values that 
produces an output of 1?  (a set of input values that 
satisfies the logic given by the circuit)

● We observe that the problem can be trivially solved in 
exponential time — try all 2n possible combinations of n binary 
values, checking whether the output is 1.

● It is not known, however, whether a polynomial time solution 
exists  (none is known, but no-one has been able to prove that 
none exist)
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● NP-complete problems:
● It all goes back to the first problem discovered to be 

NP-complete — the Circuit satisfiability problem:
– It is also straightforward to see that this problem is NP

● If given a certificate consisting of a combination of 1 and 0's that 
satisfies the circuit, we can verify it in polynomial time  (there is 
the implicit assumption that the number of logic gates is 
polynomial with respect to the number of inputs)
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● NP-complete problems:
● How is it that it was discovered that every problem 

in NP reduces to the circuit satisfiability problem?
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● NP-complete problems:
● How is it that it was discovered that every problem 

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right? 

(you guys saw ECE-124 and are now near completion of 
ECE-222, so for you, this proof will be a piece of cake!)
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● NP-complete problems:
● How is it that it was discovered that every problem 

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right? 

(you guys saw ECE-124 and are now near completion of 
ECE-222, so for you, this proof will be a piece of cake!)

● Any problem that is in NP has an efficient verification algorithm.
● That algorithm can be implemented in a digital computer.
● Because the verification occurs in polynomial time, then that 

means that the algorithm will complete execution in a polynomial 
number of clock cycles.
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● NP-complete problems:
● How is it that it was discovered that every problem 

in NP reduces to the circuit satisfiability problem?
– Well, you guys know how a digital computer works, right? 

(you guys saw ECE-124 and are now near completion of 
ECE-222, so for you, this proof will be a piece of cake!)

● Any problem that is in NP has an efficient verification algorithm.
● That algorithm can be implemented in a digital computer.
● Because the verification occurs in polynomial time, then that 

means that the algorithm will complete execution in a polynomial 
number of clock cycles.

●  ... Anyone sees where this is going?
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● NP-complete problems:
● A digital computer has a state, represented by all of 

its internal registers  (the ones that are “visible” to 
the user through the ISA, and the ones that aren't;  
i.e., the ones that are part of the control circuitry)

● At each clock cycle, a huge (but fixed-size) set of 
combinational circuits map the current state to the 
next state.
– States are “captured” at each clock edge by the arrays of 

flip-flops (the registers), and then the outputs of these 
registers are fed to the combinational circuits to 
determine the next state.
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● NP-complete problems:
● So, I'll ask again:  anyone sees where this is going?
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● NP-complete problems:
● We could construct a circuit that “executes” the 

entire algorithm by eliminating the clock and the 
registers that provide a “state”, and instead, simply 
put multiple copies (stages) of the combinational 
circuits that determine the next state.
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● NP-complete problems:
● We could construct a circuit that “executes” the 

entire algorithm by eliminating the clock and the 
registers that provide a “state”, and instead, simply 
put multiple copies (stages) of the combinational 
circuits that determine the next state.
– The output of each stage (representing the next state) is 

not fed back to registers that will capture the value:  
instead, that output is directly fed as input to the next 
stage of combinational circuits.
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● NP-complete problems:

CLRS, Fig. 34.9
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● NP-complete problems:
● Bottom line:  for any given NP problem, we can 

implement the the verification procedure, and from 
there, generate a combinational circuit that 
“executes” it sort of instantaneously  (plus-minus 
circuits response time and signals propagation 
time).
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● NP-complete problems:
● Bottom line:  for any given NP problem, we can 

implement the the verification procedure, and from 
there, generate a combinational circuit that 
“executes” it sort of instantaneously  (plus-minus 
circuits response time and signals propagation 
time).

● If the output of that circuit is 1 for a given input, then 
that input verifies the problem.
– So, if we could solve the circuit satisfiability problem in 

polynomial time, then we would be able to find a solution 
to any problem for which a solution can be verified in 
polynomial time.
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● NP-complete problems:
● Recall that a solution to circuit-sat tells you whether 

there exists a combination of ones and zeros that 
produces a 1 as the output.

● But that output is the solution to the other NP 
problem.
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● NP-complete problems:
● Recall that a solution to circuit-sat tells you whether 

there exists a combination of ones and zeros that 
produces a 1 as the output.

● But that output is the solution to the other NP 
problem.

● Important detail:  the number of stages in that huge 
circuit is the number of clock cycles that the 
algorithm takes — since we're talking about NP 
problems, then that number of cycles is polynomial, 
and thus the number of logic gates will be 
polynomial with respect to the size of the input!
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● NP-complete problems:
● Bottom line  (as in, the real bottom line):  this 

construction shows that every NP problem reduces 
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● NP-complete problems:
● Bottom line  (as in, the real bottom line):  this 

construction shows that every NP problem reduces 
to the circuit satisfiability problem!

● That means that this problem is at least as hard as 
every other problem in NP — thus, it is at least as 
hard as the hardest problem(s) in NP
– This is the definition of an NP-hard problem:  A problem 

such that every problem in NP can be reduced to it.
– Notice that an NP-hard problem does not have to be in 

NP (it doesn't even need to be a decision problem!)
● An NP-complete problem is an NP-hard problem that is NP
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● NP-complete problems — the complete picture:
● Circuit-sat was the firts problem to be shown to be 

NP-hard;  since it clearly is NP, then that makes it 
NP complete.‑

● If we can reduce circuit-sat to any other NP 
problem, that would make that other problem 
equivalent to circuit-sat — since circuit-sat reduces 
to that problem, but we know that that problem 
reduces to circuit-sat
– So, circuit-sat really “closes the loop” that ties every 

NP complete problem to every other NP-complete ‑
problem:  solving either one solves every one.
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● NP-complete problems — the complete picture:

CLRS, Fig. 34.13
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● For example, the Travelling Salesman Problem 
(TSP) is a surprisingly ubiquitous problem (it 
shows up in many optimization problems, in 
pattern recognition, circuit design, DNA 
sequencing, economics, etc.)
● Given a complete weighted graph (a graph for 

which every vertex is adjacent to every other 
vertex), is there a path of length less than or equal 
to a given parameter k that visits each vertex 
exactly once returning to the starting vertex?
– The related optimization problem being:  find the shortest 

path that visits each vertex exactly once returning to the 
first one.
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● Side note:
● In its original formulation, the problem is given n 

cities with pairwise distances, find the shortest 
itinerary that visits each city exactly once and 
returns to the starting city.   (but this immediately 
translates into the more abstract formulation with a 
complete graph)
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● TSP is obviously NP — if we're given a solution 
consisting of a path that meets the 
requirements, we can easily verify that each 
vertex is visited exactly once, and we can easily 
compute the length of the path and verify that it 
is less than or equal to k.
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● Reducing the Hamiltonian cycle problem to TSP 
is surprisingly straightforward:
● Given a graph G, construct a complete weighted 

graph G' that has the same vertices as G, and such 
that for every pair of vertices (u,v), the edge (u,v) in 
G' has weight 0 if the edge (u,v) is present in G, 
and weight 1 otherwise.
– Then, we ask the algorithm that decides TSP whether 

there is a path of length 0 in G' that visits each vertex 
exactly once...  Anyone sees why this works?

● If there is, then it means that only edges with weight 0 could 
have been used — but those are edges that are present in G, 
and so if there is such a path in G', then there is a Hamiltonian 
cycle in G.
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● The clique and vertex cover are also related by 
a simple construction:
● Clique problem:  a clique is a sub-graph in which 

every vertex is connected to every other vertex.  
The clique problem being:  given a graph, is there a 
clique in it?  (or, is there a clique of at least k 
vertices?)

● Vertex cover:  a vertex cover is a sub-graph such 
that every vertex in the graph is adjacent to some 
vertex or vertices in that sub-graph  (so, that subset 
of vertices “covers” the entire graph)
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● The reduction is not as trivial as Hamiltonian 
cycle to TSP, but it is still remarkably simple:
● Given a graph G, we construct a graph G' with the 

same set of vertices, and  where the set of edges is 
the complement of the set of edges in G  (every 
edge present in G is missing in G' and every edge 
missing in G is present in G').
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● The reduction is not as trivial as Hamiltonian 
cycle to TSP, but it is still remarkably simple:
● Given a graph G, we construct a graph G' with the 

same set of vertices, and  where the set of edges is 
the complement of the set of edges in G  (every 
edge present in G is missing in G' and every edge 
missing in G is present in G').
– It can be shown that G has a clique of size k if and only if 

G' has a vertex cover of size n−k.
– This property provides the sought reduction.
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● Big picture:
● Why are these notions relevant for us, engineers?

● Instances of these problems or problems similar to 
them tend to show up very often in engineering (not 
only in software!!).

● If a problem is NP-complete, we don't know that no 
efficient solution exists, but no-one knows of an 
efficient solution for either one of these problems, 
and it is believed that none exist!
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knowing which problems are NP-complete) can 
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● Big picture:
● Why are these notions relevant for us, engineers?

● As engineers, knowing about these problems (and 
knowing which problems are NP-complete) can 
save us lots of time — time which could have 
otherwise wasted looking for an algorithm to solve a 
problem which is extremely unlikely (virtually 
impossible) that we would find a solution!

● Plus, c'mon — this has to be in the category of 
all time most awesome ideas ... ever‑  !!
– So, who was worried about a shortage of coolness in this 

course?  :-)



  

Summary

● During today's lesson:
● Categorized problems as polynomial time 

(tractable) vs. non-polynomial time (intractable).
● Looked into the notion of decision problems, and 

their relationship to an associated computation or 
optimization problem.

● Introduced the sets P and NP, and the big, 
mysterious, open question:  Is P = NP?

● Introduced the notions of NP-hard and NP-complete 
problems.

● Argued about the relevance of these notions in a 
practical setting (for an engineer)
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