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– Greedy algorithms
– Backtracking algorithms
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● Divide-and-conquer:
● Break the problem into smaller sub-problems
● Solve each of the sub-problems
● Combine the solutions to obtain the solution to the 

original problem

● Key detail:
● We keep breaking the sub-problems into smaller 

and smaller, until the problem is transformed into 
something entirely different.
– At this point, we “conquered” the original problem.
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● Divide-and-conquer:
● Example:  In the merge sort, we have the 

(complicated) task of sorting a bunch of values.
– However, sorting a set of one value, however, is a 

completely different problem (a trivial one, in this case).
– Sorting a set of two values is not as trivial, but it's still a 

completely different problem — one that can be 
described as one conditional swap.
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● Divide-and-conquer:
● An interesting example that we have not covered 

earlier in the course:  Karatsuba multiplication 
algorithm:
– Useful for multiplying polynomials and integer number 

(based on a binary representation)
● Originally proposed as an efficient technique to 

implement binary multiplication in hardware  (i.e., 
an efficient design of the multiplication circuitry in 
an ALU)
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multiplying two single-bit numbers is just a logical 
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● Divide-and-conquer:
● The key detail in this case being:  multiplying two 

numbers of n bits is a complicated problem — but 
multiplying two single-bit numbers is just a logical 
AND gate.

● The algorithm is nowadays used in cryptographic 
applications (among others), where arithmetic with 
very large numbers (in the order of up to thousands 
of bits) is required:
– In this context, the difference being:  multiply a number of 

n bits where n > CPU register width  vs.  multiply two 
register-size numbers.
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● Divide-and-conquer:
● The idea is that instead of the “schoolbook” 

approach to multiply (requiring O(n²)), we break the 
number (or the polynomial) into two halves, and use 
a trick to express the result in terms of three 
multiplications of half-size operands:
– Example shown in the board  (feel free to take notes if 

you want, but I'll post an expanded version of these 
slides within the next few days)
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● Karatsuba multiplication algorithm:
● Say that we have to multiply two n-bit numbers A 

and B  (to simplify the example, we'll assume that n 
is a power of 2, so that we can always divide into 
two)

● The result is clearly a 2n bits number
– Can not be more than 2n bits, and can require up to 2n 

bits to represent.

– n bits can represent up to 2n−1, and (2n−1) × (2n−1) is 
22n − 2n+1 + 1 < 22n and thus takes 2n bits to represent.
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                  , and     .  Clearly, we have that:AH , AL , BH BL

A=AH 2n /2+AL
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● Karatsuba multiplication algorithm:
● We split each of the two numbers into two halves,    

                  , and     .  Clearly, we have that:

 
Thus:

AH , AL , BH BL

A=AH 2n /2+AL
B=BH 2n /2+BL

A⋅B = AH BH 2n + (AH BL+AL BH )2n /2
+ ALBL



  

Algorithm design techniques

● Karatsuba multiplication algorithm:
● At first glance, the equation looks like we need four 

multiplications of half-size  (and if we do the math, 
we quickly realize that that leads to quadratic run 
time).

● The clever detail proposed by Karatsuba was that 
the operations can be re-arranged to trade one 
multiplication by a few additions (but additions are 
inexpensive — they're linear time!)
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● Karatsuba multiplication algorithm:
● From this equation:

 
● We notice that:

A⋅B = AH BH⏟
D2

2n + (AH BL+AL BH⏟
D1

)2n /2
+ ALBL⏟

D0

(AH+AL)⋅(BH+BL) = AH BH+AL BL+AH BL+AL BH
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● Karatsuba multiplication algorithm:
● From this equation:

 
● We notice that:

● The left term involves one multiplication of half-size 
operands, plus two additions, and the result is the 
term D1 with two additional terms — but these 
additional terms are D0 and D2, which can be 
reused, since they need to be computed anyway!

A⋅B = AH BH⏟
D2

2n + (AH BL+AL BH⏟
D1

)2n /2
+ ALBL⏟

D0

(AH+AL)⋅(BH+BL) = AH BH+AL BL+AH BL+AL BH
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● Karatsuba multiplication algorithm:
● Summarizing, we compute the following three 

multiplications of half-size operands:

● And the result is obtained as:

D0 = ALBL
D2 = AH+BH
D1 = (AH+AL) (BH+BL) − D0 − D2

A⋅B = D2 2n + D1 2n /2+D0
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● Karatsuba multiplication algorithm:
● We recall that multiplying times a power of 2 simply 

means left-shifting the bits;  so, the expression 
                             is simply obtained by adding the 
values at the appropriate position:
D2 2n + D1 2n/2

+D0

D2 D0D2

D1

2n

n/2
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● Divide-and-conquer:
● The run time is given by the following recurrence 

relation:

T(n) = 3 T(n /2) + Θ(n)
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● Divide-and-conquer:
● The run time is given by the following recurrence 

relation:

● With this, the run time comes down to 
O(3 lg n) = O(n lg 3) ≈ O(n1.585)  (sub-quadratic time)

T(n) = 3 T(n /2) + Θ(n)
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● Next, let's take a look at Greedy algorithms...
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Algorithm design techniques

● These are iterative algorithms that at each 
iteration the criterion used is to maximize some 
“gain” or some objective function.
● The term “greedy” refers to the fact that the 

algorithms do this in a “short sighted” way;  they try 
to maximize immediate gain, disregarding the big 
picture  (“get the most I can get now ”).



  

Algorithm design techniques

● These are iterative algorithms that at each 
iteration the criterion used is to maximize some 
“gain” or some objective function.
● The term “greedy” refers to the fact that the 

algorithms do this in a “short sighted” way;  they try 
to maximize immediate gain, disregarding the big 
picture  (“get the most I can get now ”).
– For this reason, they can fail to determine a global 

maximum or minimum  (they could “fall in a trap” and 
converge to some local maximum)

– Example:  finding the maximum of a function going by 
steps of fixed size.  (example drawn in the board)
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saw our fair share of greedy algorithms that are 
proven to obtain the correct output ...  Anyone?
● Hint:  we saw three of these very recently ... 
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● Now, they don't necessarily fail — in fact, we 
saw our fair share of greedy algorithms that are 
proven to obtain the correct output ...  Anyone?
● Hint:  we saw three of these very recently ... 

● Dijkstra's, Prim's, and Kruskal's algorithms are 
all greedy algorithms  (though we'll see that 
Dijkstra's and Prim's also exhibit aspects of 
dynamic programming)
● And they do work  (we proved some of the related 

details!)
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minimizing the number of coins required.
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● A classical example of this technique is the 
problem of producing change — or in general, 
expressing a given amount of money in coins, 
minimizing the number of coins required.
● What's a greedy algorithm to compute this result?

● At each iteration, put as many coins of the highest 
denomination that fits  (so that at this iteration we 
minimize the number of coins used).
– But....  Does it minimize the number of coins in the final 

outcome of the algorithm?
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● You're probably used to the idea that it does  
(because with Canadian coins / denominations, 
it does work)
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● You're probably used to the idea that it does  
(because with Canadian coins / denominations, 
it does work)

● But it can indeed fail....  Anyone?
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● You're probably used to the idea that it does  
(because with Canadian coins / denominations, 
it does work)

● But it can indeed fail.  Consider denominations 
10, 8, and 1;  and try to break 17 into those.
● The optimal is obviously 3 coins (2×8 + 1);  but the 

greedy algorithm would tell us that we require 8 
coins!  (10 + 7×1)
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● This greedy algorithm can work (as in, produce 
always the correct output), depending on the 
set of denominations:
● If every denomination is at least twice the next one 

(“next one” in decreasing order, that is).
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● The greedy algorithm can work (as in, produce 
always the correct output), depending on the 
set of denominations:
● If every denomination is at least twice the next one 

(“next one” in decreasing order, that is).
● Alternatively, if every denomination is greater than 

or equal to the sum of all smaller denominations.
– Canadian coins meet these requirements; in cents, we 

have:  200, 100, 25, 10, 5, and 1
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● So, if these greedy / short-sighted algorithms 
can fail, why do we bother?  Why are they 
attractive?



  

Algorithm design techniques

● So, if these greedy / short-sighted algorithms 
can fail, why do we bother?  Why are they 
attractive?
● They tend to be efficient — at each iteration, we 
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look globally.

● If we can find a greedy algorithm that works, then 
that's good news!
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● So, if these greedy / short-sighted algorithms 
can fail, why do we bother?  Why are they 
attractive?
● They tend to be efficient — at each iteration, we 

look only at the immediate scenario, no need to 
look globally.

● If we can find a greedy algorithm that works, then 
that's good news!
– On the other hand, it could be an example of a solution to 

a problem like an NP-complete problem, or a problem 
believed intractable, and a greedy algorithm might be an 
efficient alternative that finds a near-optimal solution.
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● Next, we'll look at Backtracking algorithms...
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● Backtracking algorithms can be seen as an 
optimized form of exhaustive search algorithms:
● Try all possible combinations of things, with early 

elimination of paths that lead to no solution.
● A good visual analogy is:  Think of the possibilities 

represented by a tree, and we do a depth-first 
traversal, but we have the advantage that in many 
cases, before reaching the leaf node, we'll know 
that this path will lead us nowhere, so we just 
“backtrack” and try the next possibility at the 
previous level.
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● One classical example is the famous eight 
queens Chess puzzle:
● Find a placement for eight queens in a chess board 

such that neither one falls under threat of capture.
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● One classical example is the famous eight 
queens Chess puzzle:
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Algorithm design techniques

● A backtracking algorithm places one queen at a 
time (say, column by column).
● At each column (each “level” of the search), we 

have eight possibilities, so we try one and move to 
the next level.
– If at some level we find that all eight possibilities fail, then 

we backtrack — go back to the previous level, reporting 
that this one failed;  at the previous level, we now move 
to the next possibility and keep trying.
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● A backtracking algorithm places one queen at a 
time (say, column by column).
● At each column (each “level” of the search), we 

have eight possibilities, so we try one and move to 
the next level.
– If at some level we find that all eight possibilities fail, then 

we backtrack — go back to the previous level, reporting 
that this one failed;  at the previous level, we now move 
to the next possibility and keep trying.

– The key detail is that most of the time, we're going to 
discover early that the current path won't work  (e.g., at 
the third or fourth column we'll find that it won't work)
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● Another classical example is the Turnpike 
reconstruction problem:
● We have n points in a line, and we're given the 

distances (say, in ascending order) between every 
pair of points;  that is, we're given

● The problem is:  find the values  (the points), 
assuming a fixed reference point  (e.g., x1 = 0)

– Notice that for n points, we'll have n(n−1) / 2 distances.

∣x k − xm∣ ∀ k ,m



  

Algorithm design techniques

● An algorithm goes by processing the distances 
from highest to lowest.  Let's work through this 
example (from Mark Allen Weiss textbook) of 6 
points (6 values), x1 to  x6 for which we're given 
these 15 distances:

{1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10}
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● Key detail here:  at each iteration, we have 
several possibilities, but some possibilities don't 
work because they lead to points with distances 
that are not found in the set.
● So, we backtrack and discard the “current” 

possibility being considered at the previous level.
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● Key detail here:  at each iteration, we have 
several possibilities, but some possibilities don't 
work because they lead to points with distances 
that are not found in the set.
● So, we backtrack and discard the “current” 

possibility being considered at the previous level.

● If possible, see Mark Allen Weiss book for an 
algorithm (actually, a C++ fragment of code) 
implementing this approach.
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● Last, we'll take a look at Dynamic programming.
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● The basic idea with Dynamic programming is to 
work with a problem that is broken into slightly 
smaller sub-problems, where some of these 
sub-problems overlap.
● A straightforward recursive solution is inefficient 

since we solve the same sub-problems over and 
over again.
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● The basic idea with Dynamic programming is to 
work with a problem that is broken into slightly 
smaller sub-problems, where some of these 
sub-problems overlap.
● A straightforward recursive solution is inefficient 

since we solve the same sub-problems over and 
over again.

● The main detail with a dynamic programming 
solution is that we store the solutions for 
sub problems that we already solved!‑



  

Algorithm design techniques

● A classical example is that of a recursive 
implementation of a function to determine a 
Fibonacci number — which can be “neatly” 
implemented as:

int fibonacci (int n)
{
    if (n <= 2)
    {
        return 1;
    }
    return fibonacci(n−1) + fibonacci(n−2);
}
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● Why is that function horribly inefficient ?
● Computing F(6) involves computing F(5) and F(4);  

but then, computing F(5) requires computing F(4) 
and F(3), so we end up doing redundant 
computations.
– Hopefully you see the exponential nature of the 

redundancy?
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● Why is that function horribly inefficient ?
● Computing F(6) involves computing F(5) and F(4);  

but then, computing F(5) requires computing F(4) 
and F(3), so we end up doing redundant 
computations.
– Hopefully you see the exponential nature of the 

redundancy?
– In the above example, it might seem like we're doing no 

more than twice as much work — but F(3), for example, 
is needed (indirectly) by F(6), both through the paths F(5) 
and F(4) — but then F(4) is being redundant....  Each 
extra level multiplies times something the number of 
times the lower F(k) are computed
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● Why is that function horribly inefficient ?
● There's actually a far more neat way to see that the 

run time is exponential.
– The recurrence relation for that recursive function is:

– But that's the same recurrence relation as for the 
Fibonacci numbers themselves, with an additional term 
added (the Θ(1) term).

● Thus, T(n) ≥ F(n) — T(n) grows at least as fast as the sequence 
of Fibonacci numbers, which is known to grow exponentially!

T(n) = T (n−1) + T(n−2) + Θ(1)
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● The Dynamic programming approach is, then, 
storing the computed values so that we don't 
need to redundantly compute them over and 
over.
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● Notice that we do not need an exponential amount 

of storage — the amount of storage is linear.
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● The Dynamic programming approach is, then, 
storing the computed values so that we don't 
need to redundantly compute them over and 
over.
● Notice that we do not need an exponential amount 

of storage — the amount of storage is linear.
● The amount of redundancy was exponential  (it's 

not like we compute an exponential number of 
values;  no, we compute a small number of values 
repeatedly — for a total exponential number of 
computations).
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● Two approaches:
● Top to bottom

– Set up an associated array where each time that the 
function is requested to compute one value, it first checks 
if that value is in the corresponding location in the array:

● If it is, use the value
● If it's not, compute the value and store the obtained result in the 

array.
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● Two approaches:
● Top to bottom

– Set up an associated array where each time that the 
function is requested to compute one value, it first checks 
if that value is in the corresponding location in the array:

● If it is, use the value
● If it's not, compute the value and store the obtained result in the 

array.

● Bottom to top
– Start at the “base case”, and explicitly go up, calculating 

the “upper” values in terms of the already-calculated 
“bottom” values.
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● There are many applications.  Examples are:
● Finding the optimal order of multiplications for a 

sequence of matrices of different sizes
– Matrix multiplication is associative;  obtaining ABCD can 

be done as A(BCD), or (AB)(CD), or A(BC)D, etc.
– When considering all possible arrangements, some of the 

arrangements for smaller sequences repeat, so we would 
end up redundantly doing these computations  (see for 
example Prof. Harder's slides for a complete example 
with more details)
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● There are many applications.  Examples are:
● Finding common substrings, or aligning strings 

where differences are small omissions on either 
side.

● Alignment by stretching sub-sequences:
– This has very interesting applications in speech 

recognition and in rhythm recognition/matching for music 
search applications.



  

Summary

● During today's lesson, we:
● Introduced four important algorithm design 

techniques;  namely:
– Divide-and-conquer
– Greedy algorithms
– Backtracking algorithms
– Dynamic programming

● Discussed some illustrative/representative 
examples of each of the techniques.

● Discussed some of the advantages and when the 
given technique is appropriate.
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