

Algorithm design techniques

Carlos Moreno
cmoreno @ uwaterloo.ca

EIT-4103

https://ece.uwaterloo.ca/~cmoreno/ece250

Algorithm design techniques

Standard reminder to set phones to
silent/vibrate mode, please!

Algorithm design techniques

● During today's lesson, we'll
● Go over some of the important algorithm design

techniques, or algorithmic paradigms. In particular:
– Divide-and-conquer
– Greedy algorithms
– Backtracking algorithms
– Dynamic programming

Algorithm design techniques

● During today's lesson, we'll
● Go over some of the important algorithm design

techniques, or algorithmic paradigms. In particular:
– Divide-and-conquer
– Greedy algorithms
– Backtracking algorithms
– Dynamic programming

Algorithm design techniques

● Divide-and-conquer:
● Break the problem into smaller sub-problems
● Solve each of the sub-problems
● Combine the solutions to obtain the solution to the

original problem

Algorithm design techniques

● Divide-and-conquer:
● Break the problem into smaller sub-problems
● Solve each of the sub-problems
● Combine the solutions to obtain the solution to the

original problem

● Key detail:
● We keep breaking the sub-problems into smaller

and smaller, until the problem is transformed into
something entirely different.
– At this point, we “conquered” the original problem.

Algorithm design techniques

● Divide-and-conquer:
● Example: In the merge sort, we have the

(complicated) task of sorting a bunch of values.

Algorithm design techniques

● Divide-and-conquer:
● Example: In the merge sort, we have the

(complicated) task of sorting a bunch of values.
– However, sorting a set of one value, however, is a

completely different problem (a trivial one, in this case).

Algorithm design techniques

● Divide-and-conquer:
● Example: In the merge sort, we have the

(complicated) task of sorting a bunch of values.
– However, sorting a set of one value, however, is a

completely different problem (a trivial one, in this case).
– Sorting a set of two values is not as trivial, but it's still a

completely different problem — one that can be
described as one conditional swap.

Algorithm design techniques

● Divide-and-conquer:
● An interesting example that we have not covered

earlier in the course: Karatsuba multiplication
algorithm:
– Useful for multiplying polynomials and integer number

(based on a binary representation)
● Originally proposed as an efficient technique to

implement binary multiplication in hardware (i.e.,
an efficient design of the multiplication circuitry in
an ALU)

Algorithm design techniques

● Divide-and-conquer:
● The key detail in this case being: multiplying two

numbers of n bits is a complicated problem — but
multiplying two single-bit numbers is just a logical
AND gate.

Algorithm design techniques

● Divide-and-conquer:
● The key detail in this case being: multiplying two

numbers of n bits is a complicated problem — but
multiplying two single-bit numbers is just a logical
AND gate.

● The algorithm is nowadays used in cryptographic
applications (among others), where arithmetic with
very large numbers (in the order of up to thousands
of bits) is required:

Algorithm design techniques

● Divide-and-conquer:
● The key detail in this case being: multiplying two

numbers of n bits is a complicated problem — but
multiplying two single-bit numbers is just a logical
AND gate.

● The algorithm is nowadays used in cryptographic
applications (among others), where arithmetic with
very large numbers (in the order of up to thousands
of bits) is required:
– In this context, the difference being: multiply a number of

n bits where n > CPU register width vs. multiply two
register-size numbers.

Algorithm design techniques

● Divide-and-conquer:
● The idea is that instead of the “schoolbook”

approach to multiply (requiring O(n²)), we break the
number (or the polynomial) into two halves, and use
a trick to express the result in terms of three
multiplications of half-size operands:
– Example shown in the board (feel free to take notes if

you want, but I'll post an expanded version of these
slides within the next few days)

Algorithm design techniques

● Karatsuba multiplication algorithm:
● Say that we have to multiply two n-bit numbers A

and B (to simplify the example, we'll assume that n
is a power of 2, so that we can always divide into
two)

● The result is clearly a 2n bits number
– Can not be more than 2n bits, and can require up to 2n

bits to represent.

– n bits can represent up to 2n−1, and (2n−1) × (2n−1) is
22n − 2n+1 + 1 < 22n and thus takes 2n bits to represent.

Algorithm design techniques

● Karatsuba multiplication algorithm:
● We split each of the two numbers into two halves,

 , and . Clearly, we have that:AH , AL , BH BL

A=AH 2n /2+AL
B=BH 2n /2+BL

Algorithm design techniques

● Karatsuba multiplication algorithm:
● We split each of the two numbers into two halves,

 , and . Clearly, we have that:

Thus:

AH , AL , BH BL

A=AH 2n /2+AL
B=BH 2n /2+BL

A⋅B = AH BH 2n + (AH BL+AL BH)2n /2
+ ALBL

Algorithm design techniques

● Karatsuba multiplication algorithm:
● At first glance, the equation looks like we need four

multiplications of half-size (and if we do the math,
we quickly realize that that leads to quadratic run
time).

● The clever detail proposed by Karatsuba was that
the operations can be re-arranged to trade one
multiplication by a few additions (but additions are
inexpensive — they're linear time!)

Algorithm design techniques

● Karatsuba multiplication algorithm:
● From this equation:

● We notice that:

A⋅B = AH BH⏟
D2

2n + (AH BL+AL BH⏟
D1

)2n /2
+ ALBL⏟

D0

(AH+AL)⋅(BH+BL) = AH BH+AL BL+AH BL+AL BH

Algorithm design techniques

● Karatsuba multiplication algorithm:
● From this equation:

● We notice that:

● The left term involves one multiplication of half-size
operands, plus two additions, and the result is the
term D1 with two additional terms — but these
additional terms are D0 and D2, which can be
reused, since they need to be computed anyway!

A⋅B = AH BH⏟
D2

2n + (AH BL+AL BH⏟
D1

)2n /2
+ ALBL⏟

D0

(AH+AL)⋅(BH+BL) = AH BH+AL BL+AH BL+AL BH

Algorithm design techniques

● Karatsuba multiplication algorithm:
● Summarizing, we compute the following three

multiplications of half-size operands:

● And the result is obtained as:

D0 = ALBL
D2 = AH+BH
D1 = (AH+AL) (BH+BL) − D0 − D2

A⋅B = D2 2n + D1 2n /2+D0

Algorithm design techniques

● Karatsuba multiplication algorithm:
● We recall that multiplying times a power of 2 simply

means left-shifting the bits; so, the expression
 is simply obtained by adding the
values at the appropriate position:
D2 2n + D1 2n/2

+D0

D2 D0D2

D1

2n

n/2

Algorithm design techniques

● Divide-and-conquer:
● The run time is given by the following recurrence

relation:

T(n) = 3 T(n /2) + Θ(n)

Algorithm design techniques

● Divide-and-conquer:
● The run time is given by the following recurrence

relation:

● With this, the run time comes down to
O(3 lg n) = O(n lg 3) ≈ O(n1.585) (sub-quadratic time)

T(n) = 3 T(n /2) + Θ(n)

Algorithm design techniques

● Next, let's take a look at Greedy algorithms...

Algorithm design techniques

● These are iterative algorithms that at each
iteration the criterion used is to maximize some
“gain” or some objective function.

Algorithm design techniques

● These are iterative algorithms that at each
iteration the criterion used is to maximize some
“gain” or some objective function.
● The term “greedy” refers to the fact that the

algorithms do this in a “short sighted” way; they try
to maximize immediate gain, disregarding the big
picture (“get the most I can get now ”).

Algorithm design techniques

● These are iterative algorithms that at each
iteration the criterion used is to maximize some
“gain” or some objective function.
● The term “greedy” refers to the fact that the

algorithms do this in a “short sighted” way; they try
to maximize immediate gain, disregarding the big
picture (“get the most I can get now ”).
– For this reason, they can fail to determine a global

maximum or minimum (they could “fall in a trap” and
converge to some local maximum)

– Example: finding the maximum of a function going by
steps of fixed size. (example drawn in the board)

Algorithm design techniques

● Now, they don't necessarily fail — in fact, we
saw our fair share of greedy algorithms that are
proven to obtain the correct output ... Anyone?
● Hint: we saw three of these very recently ...

Algorithm design techniques

● Now, they don't necessarily fail — in fact, we
saw our fair share of greedy algorithms that are
proven to obtain the correct output ... Anyone?
● Hint: we saw three of these very recently ...

● Dijkstra's, Prim's, and Kruskal's algorithms are
all greedy algorithms (though we'll see that
Dijkstra's and Prim's also exhibit aspects of
dynamic programming)

Algorithm design techniques

● Now, they don't necessarily fail — in fact, we
saw our fair share of greedy algorithms that are
proven to obtain the correct output ... Anyone?
● Hint: we saw three of these very recently ...

● Dijkstra's, Prim's, and Kruskal's algorithms are
all greedy algorithms (though we'll see that
Dijkstra's and Prim's also exhibit aspects of
dynamic programming)
● And they do work (we proved some of the related

details!)

Algorithm design techniques

● A classical example of this technique is the
problem of producing change — or in general,
expressing a given amount of money in coins,
minimizing the number of coins required.
● What's a greedy algorithm to compute this result?

Algorithm design techniques

● A classical example of this technique is the
problem of producing change — or in general,
expressing a given amount of money in coins,
minimizing the number of coins required.
● What's a greedy algorithm to compute this result?

● At each iteration, put as many coins of the highest
denomination that fits (so that at this iteration we
minimize the number of coins used).

Algorithm design techniques

● A classical example of this technique is the
problem of producing change — or in general,
expressing a given amount of money in coins,
minimizing the number of coins required.
● What's a greedy algorithm to compute this result?

● At each iteration, put as many coins of the highest
denomination that fits (so that at this iteration we
minimize the number of coins used).
– But.... Does it minimize the number of coins in the final

outcome of the algorithm?

Algorithm design techniques

● You're probably used to the idea that it does
(because with Canadian coins / denominations,
it does work)

Algorithm design techniques

● You're probably used to the idea that it does
(because with Canadian coins / denominations,
it does work)

● But it can indeed fail.... Anyone?

Algorithm design techniques

● You're probably used to the idea that it does
(because with Canadian coins / denominations,
it does work)

● But it can indeed fail. Consider denominations
10, 8, and 1; and try to break 17 into those.
● The optimal is obviously 3 coins (2×8 + 1); but the

greedy algorithm would tell us that we require 8
coins! (10 + 7×1)

Algorithm design techniques

● This greedy algorithm can work (as in, produce
always the correct output), depending on the
set of denominations:
● If every denomination is at least twice the next one

(“next one” in decreasing order, that is).

Algorithm design techniques

● The greedy algorithm can work (as in, produce
always the correct output), depending on the
set of denominations:
● If every denomination is at least twice the next one

(“next one” in decreasing order, that is).
● Alternatively, if every denomination is greater than

or equal to the sum of all smaller denominations.
– Canadian coins meet these requirements; in cents, we

have: 200, 100, 25, 10, 5, and 1

Algorithm design techniques

● So, if these greedy / short-sighted algorithms
can fail, why do we bother? Why are they
attractive?

Algorithm design techniques

● So, if these greedy / short-sighted algorithms
can fail, why do we bother? Why are they
attractive?
● They tend to be efficient — at each iteration, we

look only at the immediate scenario, no need to
look globally.

● If we can find a greedy algorithm that works, then
that's good news!

Algorithm design techniques

● So, if these greedy / short-sighted algorithms
can fail, why do we bother? Why are they
attractive?
● They tend to be efficient — at each iteration, we

look only at the immediate scenario, no need to
look globally.

● If we can find a greedy algorithm that works, then
that's good news!
– On the other hand, it could be an example of a solution to

a problem like an NP-complete problem, or a problem
believed intractable, and a greedy algorithm might be an
efficient alternative that finds a near-optimal solution.

Algorithm design techniques

● Next, we'll look at Backtracking algorithms...

Algorithm design techniques

● Backtracking algorithms can be seen as an
optimized form of exhaustive search algorithms:
● Try all possible combinations of things, with early

elimination of paths that lead to no solution.

Algorithm design techniques

● Backtracking algorithms can be seen as an
optimized form of exhaustive search algorithms:
● Try all possible combinations of things, with early

elimination of paths that lead to no solution.
● A good visual analogy is: Think of the possibilities

represented by a tree, and we do a depth-first
traversal, but we have the advantage that in many
cases, before reaching the leaf node, we'll know
that this path will lead us nowhere, so we just
“backtrack” and try the next possibility at the
previous level.

Algorithm design techniques

● One classical example is the famous eight
queens Chess puzzle:
● Find a placement for eight queens in a chess board

such that neither one falls under threat of capture.

Algorithm design techniques

● One classical example is the famous eight
queens Chess puzzle:
● Find a placement for eight queens in a chess board

such that neither one falls under threat of capture.

Algorithm design techniques

● A backtracking algorithm places one queen at a
time (say, column by column).
● At each column (each “level” of the search), we

have eight possibilities, so we try one and move to
the next level.
– If at some level we find that all eight possibilities fail, then

we backtrack — go back to the previous level, reporting
that this one failed; at the previous level, we now move
to the next possibility and keep trying.

Algorithm design techniques

● A backtracking algorithm places one queen at a
time (say, column by column).
● At each column (each “level” of the search), we

have eight possibilities, so we try one and move to
the next level.
– If at some level we find that all eight possibilities fail, then

we backtrack — go back to the previous level, reporting
that this one failed; at the previous level, we now move
to the next possibility and keep trying.

– The key detail is that most of the time, we're going to
discover early that the current path won't work (e.g., at
the third or fourth column we'll find that it won't work)

Algorithm design techniques

● Another classical example is the Turnpike
reconstruction problem:
● We have n points in a line, and we're given the

distances (say, in ascending order) between every
pair of points; that is, we're given

● The problem is: find the values (the points),
assuming a fixed reference point (e.g., x1 = 0)

– Notice that for n points, we'll have n(n−1) / 2 distances.

∣x k − xm∣ ∀ k ,m

Algorithm design techniques

● An algorithm goes by processing the distances
from highest to lowest. Let's work through this
example (from Mark Allen Weiss textbook) of 6
points (6 values), x1 to x6 for which we're given
these 15 distances:

{1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10}

Algorithm design techniques

● Key detail here: at each iteration, we have
several possibilities, but some possibilities don't
work because they lead to points with distances
that are not found in the set.
● So, we backtrack and discard the “current”

possibility being considered at the previous level.

Algorithm design techniques

● Key detail here: at each iteration, we have
several possibilities, but some possibilities don't
work because they lead to points with distances
that are not found in the set.
● So, we backtrack and discard the “current”

possibility being considered at the previous level.

● If possible, see Mark Allen Weiss book for an
algorithm (actually, a C++ fragment of code)
implementing this approach.

Algorithm design techniques

● Last, we'll take a look at Dynamic programming.

Algorithm design techniques

● The basic idea with Dynamic programming is to
work with a problem that is broken into slightly
smaller sub-problems, where some of these
sub-problems overlap.
● A straightforward recursive solution is inefficient

since we solve the same sub-problems over and
over again.

Algorithm design techniques

● The basic idea with Dynamic programming is to
work with a problem that is broken into slightly
smaller sub-problems, where some of these
sub-problems overlap.
● A straightforward recursive solution is inefficient

since we solve the same sub-problems over and
over again.

● The main detail with a dynamic programming
solution is that we store the solutions for
sub problems that we already solved!‑

Algorithm design techniques

● A classical example is that of a recursive
implementation of a function to determine a
Fibonacci number — which can be “neatly”
implemented as:

int fibonacci (int n)
{
 if (n <= 2)
 {
 return 1;
 }
 return fibonacci(n−1) + fibonacci(n−2);
}

Algorithm design techniques

● Why is that function horribly inefficient ?
● Computing F(6) involves computing F(5) and F(4);

but then, computing F(5) requires computing F(4)
and F(3), so we end up doing redundant
computations.
– Hopefully you see the exponential nature of the

redundancy?

Algorithm design techniques

● Why is that function horribly inefficient ?
● Computing F(6) involves computing F(5) and F(4);

but then, computing F(5) requires computing F(4)
and F(3), so we end up doing redundant
computations.
– Hopefully you see the exponential nature of the

redundancy?
– In the above example, it might seem like we're doing no

more than twice as much work — but F(3), for example,
is needed (indirectly) by F(6), both through the paths F(5)
and F(4) — but then F(4) is being redundant.... Each
extra level multiplies times something the number of
times the lower F(k) are computed

Algorithm design techniques

● Why is that function horribly inefficient ?
● There's actually a far more neat way to see that the

run time is exponential.
– The recurrence relation for that recursive function is:

– But that's the same recurrence relation as for the
Fibonacci numbers themselves, with an additional term
added (the Θ(1) term).

● Thus, T(n) ≥ F(n) — T(n) grows at least as fast as the sequence
of Fibonacci numbers, which is known to grow exponentially!

T(n) = T (n−1) + T(n−2) + Θ(1)

Algorithm design techniques

● The Dynamic programming approach is, then,
storing the computed values so that we don't
need to redundantly compute them over and
over.

Algorithm design techniques

● The Dynamic programming approach is, then,
storing the computed values so that we don't
need to redundantly compute them over and
over.
● Notice that we do not need an exponential amount

of storage — the amount of storage is linear.

Algorithm design techniques

● The Dynamic programming approach is, then,
storing the computed values so that we don't
need to redundantly compute them over and
over.
● Notice that we do not need an exponential amount

of storage — the amount of storage is linear.
● The amount of redundancy was exponential (it's

not like we compute an exponential number of
values; no, we compute a small number of values
repeatedly — for a total exponential number of
computations).

Algorithm design techniques

● Two approaches:
● Top to bottom

– Set up an associated array where each time that the
function is requested to compute one value, it first checks
if that value is in the corresponding location in the array:

● If it is, use the value
● If it's not, compute the value and store the obtained result in the

array.

Algorithm design techniques

● Two approaches:
● Top to bottom

– Set up an associated array where each time that the
function is requested to compute one value, it first checks
if that value is in the corresponding location in the array:

● If it is, use the value
● If it's not, compute the value and store the obtained result in the

array.

● Bottom to top
– Start at the “base case”, and explicitly go up, calculating

the “upper” values in terms of the already-calculated
“bottom” values.

Algorithm design techniques

● There are many applications. Examples are:
● Finding the optimal order of multiplications for a

sequence of matrices of different sizes
– Matrix multiplication is associative; obtaining ABCD can

be done as A(BCD), or (AB)(CD), or A(BC)D, etc.
– When considering all possible arrangements, some of the

arrangements for smaller sequences repeat, so we would
end up redundantly doing these computations (see for
example Prof. Harder's slides for a complete example
with more details)

Algorithm design techniques

● There are many applications. Examples are:
● Finding common substrings, or aligning strings

where differences are small omissions on either
side.

● Alignment by stretching sub-sequences:
– This has very interesting applications in speech

recognition and in rhythm recognition/matching for music
search applications.

Summary

● During today's lesson, we:
● Introduced four important algorithm design

techniques; namely:
– Divide-and-conquer
– Greedy algorithms
– Backtracking algorithms
– Dynamic programming

● Discussed some illustrative/representative
examples of each of the techniques.

● Discussed some of the advantages and when the
given technique is appropriate.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

