
© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 7.1.
Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.
University of Waterloo

Page 1 of 6

7.1 Sorting

Sorting is the process of taking a list of n objects

a0, a1, ..., an – 1

and rearranging these into a list

a'0, a'1, ..., a'n – 1

such that

a'0 ≤ a'1 ≤ ··· ≤ a'n – 1.

This is essentially the process of converting an abstract list into an abstract sorted list.

In general, we will be deal with records that are associated with a number of fields. For example, the
entries of Table 1 could be sorted numerically on the ID Number, as shown in Table 2, or sorted
lexicographically based on surname first and then on the given name, as is shown in Table 3.

Table 1. A table of ID Nnumbers, names, and addresses.

19991532 Stevenson Monica 3 Glenridge Ave.
19990253 Redpath Ruth 53 Belton Blvd.
19985832 Khilji Islam 37 Masterson Ave.
20003541 Groskurth Ken 12 Marsdale Dr.
19981932 Carol Ann 81 Oakridge Ave.
20019385 Beamer Al 7 MacBeth Blvd.
19759325 Schellenberg Al 153 Glen Morris Dr.
19982753 Beamer Gord 17 Riverview Blvd.

Table 2. The records in Table 1 sorted by ID Number.

19759325 Schellenberg Al 153 Glen Morris Dr.
19981932 Carol Ann 81 Oakridge Ave.
19982753 Beamer Gord 17 Riverview Blvd.
19985832 Khilji Islam 37 Masterson Ave.
19990253 Redpath Ruth 53 Belton Blvd.
19991532 Stevenson Monica 3 Glenridge Ave.
20003541 Groskurth Ken 12 Marsdale Dr.
20019385 Beamer Al 7 MacBeth Blvd.

Table 3. The records in Table 1 sorted by surname and then by given name.

20019385 Beamer Al 7 MacBeth Blvd.
19982753 Beamer Gord 17 Riverview Blvd.
19981932 Carol Ann 81 Oakridge Ave.
20003541 Groskurth Ken 12 Marsdale Dr.
19985832 Khilji Islam 37 Masterson Ave.
19990253 Redpath Ruth 53 Belton Blvd.
19759325 Schellenberg Al 153 Glen Morris Dr.
19991532 Stevenson Monica 3 Glenridge Ave.

For the purposes of this course, we will be sorting individual objects and not records.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 7.1.
Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.
University of Waterloo

Page 2 of 6

We topic will conclude by considering some implementation details:

1. In-place sorting,
2. The classification of sorting algorithms,
3. The run-time of sorting algorithms, and
4. A lower bound on run-times,
5. A discussion on optimal sorting algorithms,
6. Two sub-optimal sorting algorithms (for fun), and
7. Inversions.

7.1.1 In-place Sorting

A sorting algorithm is said to be in-place if it uses Θ(1) memory—that is, it requires at most the local
variables of the sorting function. Some of the sorting algorithms we will see will require a second array
of equal size to the list being sorted; that is, Θ(n) additional memory. We will prefer in-place sorting
algorithms.

7.1.2 Classification of Sorting Algorithms

The classification of sorting operations is based on the action performed:

1. Inserting a new object into a sorted list ,

2. Selecting an item from an unsorted list ,

3. Exchanging two items in a list ,

4. Merging two sorted lists , and

5. Distributing a value from a list .

7.1.3 Run Times

We will be looking at seven algorithms that have run times of Θ(n), Θ(n ln(n)) and O(n2). In each case,
we will look at the average- and worst-case scenarios and in some cases, this will be distinctly different.
Specifically, we will look at the algorithms in .

Table 4. Run-time of sorting algorithms.

Average
Run Time Algorithms Comments

O(n2) insertion and bubble sort
Θ(n ln(n)) heap, merge, and quick sort The worst case for quick sort is Θ(n2)
Θ(n) bucket and radix sort We must make assumptions about the data

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 7.1.
Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.
University of Waterloo

Page 3 of 6

7.1.4 Lower Bounds on Run Times

All sorting algorithms must inspect each object at least once requiring at least an Ω(n) run time. We will
not be able to achieve this lower bound without additional assumptions.

In general, with any algorithm that uses comparisons, you can think of each comparison between two
items as a branch in a binary tree: either the objects being compared are in order or they are out of order
(inverted). You can think of all these comparisons as branches within a tree where the leaf nodes are all
possible unsorted lists.

Now, there are n! possible unsorted lists, and therefore, this would define a tree with n! leaf nodes (the
paths leading back to the root are the decisions that are made to sort the list) with a single sorted list at the
root. A binary tree with n leaf nodes is of height at least lg(n) and therefore, the height of the tree will be
at least lg(n!) = Θ(n ln(n)).

A more detailed proof is given in Donald E. Knuth, The Art of Computer Programming, Volume 3:
Sorting and Searching, 2nd Ed., Addison Wesley, 1998, §5.3.1, p.180.

7.1.5 A Comment on Optimality

There is no such thing as an optimal sorting algorithm. Many algorithms will be better under specific
circumstances.

7.1.6 Sub-optimal Sorting Algorithms

There are two algorithms that have been studied for their run-time characteristics:

Bogo Sort

1. Check if the list is sorted, if it is, we are finished,
2. Otherwise, randomly reorder the entries of the list and go back to Step 1.

The best-case run time is Θ(n), the average-case run time is Θ(n n!), and in the worst case, it is
unbounded.

Bozo Sort

1. Check if the list is sorted, if it is, we are finished,
2. Otherwise, randomly select two entries in the list, swap them, and go back to Step 1.

The run time of Bozo Sort appears to be marginally better than Bogo Sort on average: Θ(n!).

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 7.1.
Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.
University of Waterloo

Page 4 of 6

7.1.7 Inversions

How can we measure how unsorted a particular list is? For example, consider the following three lists:

 1 16 12 26 25 35 33 58 45 42 56 67 83 75 74 86 81 88 99 95

 1 17 21 42 24 27 32 35 45 47 57 23 66 69 70 76 87 85 95 99

22 20 81 38 95 84 99 12 79 44 26 87 96 10 48 80 1 31 16 92

A cursory inspection of these lists reveals that the first and second could be described as being close to
being sorted while the third appears to be more random. Indeed, it takes only a few swaps to sort the first
list. In the second list, even fewer operations are required, but 42 and 23, for example, is significantly out
of place. The last list, however, would appear to be unsorted by any reasonable definition.

Now, given any list of n numbers, there are n-choose-2, or ()1
2 2
n n n − 

= 
 

, pairs of numbers. For

example, the unsorted list (1, 3, 5, 4, 2, 6) has the following 15 pairs

(1, 3) (1, 5) (1, 4) (1, 2) (1, 6)
 (3, 5) (3, 4) (3, 2) (3, 6)
 (5, 4) (5, 2) (5, 6)
 (4, 2) (4, 6)
 (2, 6)

Of these 15, 11 of the pairs appear in order:

(1, 3) (1, 5) (1, 4) (1, 2) (1, 6)
 (3, 5) (3, 4) (3, 2) (3, 6)
 (5, 4) (5, 2) (5, 6)
 (4, 2) (4, 6)
 (2, 6)

while the remaining four are out of order:

(1, 3) (1, 5) (1, 4) (1, 2) (1, 6)
 (3, 5) (3, 4) (3, 2) (3, 6)
 (5, 4) (5, 2) (5, 6)
 (4, 2) (4, 6)
 (2, 6)

We will describe these four pairs as being inverted. Thus, given any list (a0, a1, ..., an – 1), we will define
an inversion to be any pair (aj, ak) where j < k but aj > ak. Thus, we will say that the list (1, 3, 5, 4, 2, 6)
has four inversions.

One possible operation is to exchange (or swap) two adjacent entries in a list. You will note that any
exchange of two adjacent entries in a list will either

1. Remove an inversion, or
2. Introduce a new inversion.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 7.1.
Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.
University of Waterloo

Page 5 of 6

7.1.7.1 Number of Inversions

As there are ()1
2 2
n n n − 

= 
 

 pairs in any unsorted list, there are just as many possible inversions (the

worst case occurring when the list is reverse sorted). Consequently, any algorithm that deals only with
swapping adjacent pairs will have a run time up to O(n2). By symmetry one could argue that we would

expect in a randomly sorted list that there are approximately () ()211
22 4
n n n

n
− 

= = Θ 
 

 inversions and

therefore, the average run time of any algorithm that only swaps adjacent entries would also have an
average run time of Θ(n2).

If we consider the three previous lists, we note that each has 20 entries and therefore
20 20 19 190
2 2

  ⋅
= = 

 

pairs. In a randomly sorted list, we would expect approximately 95 inversions. With the first list,

 1 16 12 26 25 35 33 58 45 42 56 67 83 75 74 86 81 88 99 95

there are 13 inversions:

(16, 12) (26, 25) (35, 33) (58, 45) (58, 42) (58, 56) (45, 42) (83, 75) (83, 74) (83, 81) (75, 74) (86, 81) (99, 95).

In the second list,

 1 17 21 42 24 27 32 35 45 47 57 23 66 69 70 76 87 85 95 99

there are also 13 inversions:

(42, 24) (42, 27) (42, 32) (42, 35) (42, 23) (24, 23) (27, 23) (32, 23) (35, 23) (45, 23) (47, 23) (57, 23) (87, 85).

The third list, however, has 100 inversions.

7.1.7.2 Average Range of Inversions

Now, what is the probability that a randomly generated list will have close to n(n – 1)/4 inversions?
Unfortunately, as n becomes large, it becomes more-and-more likely. The standard deviation grows at a

rate of ()()1
72 1 2 5n n n− + = Θ(n3/2) which slower than the average, and therefore you are essentially

guaranteed that a randomly generated list will have relatively close to the expected number of inversions.
If you were to plot

() ()()1 1 2 5
1.96

4 72
n n n n n− − +

± ⋅ ,

you would see the 95 % confidence interval for any value of n. This is shown in Figure 1.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 7.1.
Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.
University of Waterloo

Page 6 of 6

Figure 1. A 95 % confidence interval for the number of inversions in a randomly generated list.

A 95 % confidence interval says that 19 times out of 20, a result will appear in that interval. For example,
in our previous example, with had a list size of n = 20 and therefore the confidence interval would be
95 ± 30.2 inversions. If increased the size of the array to 1000, we would expect 249 750 ± 10 338
inversions.

