
ECE-250 – Algorithms and Data Structures (Winter 2012)

Assignment 2 – Suggested solutions

1 - Place the following functions in ascending order by asymptotic behaviour, justifying for each
case (you may use either limits or the formal definition to justify). That is, put them in sequence
f1, f2, f3, · · · such that fk(n) = O(fk+1(n)):

f(n) = 10n2 + 1
f(n) = 5
f(n) = ln (n+ 1)
f(n) = 2n

f(n) = 10n

f(n) = log10 n
f(n) = lg (64n2)
f(n) = n0.00001

Solution:

The order (or rather, one possible order, given that a few of them are equivalent—so, we could see
this as a weak ordering) is: f1(n) = 5, f2(n) = ln (n+ 1), f3(n) = log10 n, f4(n) = lg (64n2),
f5(n) = n0.00001, f6(n) = 10n2 + 1, f7(n) = 2n, f8(n) = 10n

From f1 to f2, the reason is quite obvious, since lim
n→∞

5

ln (n+ 1)
clearly is 0.

The trickier ones are perhaps f2, f3 and f4; but we recall that all logarithms (to different bases) are
multiples of each other (loga x = logb x loga b). Having (n + 1) as the argument clearly makes no
difference (for n > 1, lg (n+ 1) < 1 + lg n—why? ), and f4 may look tricky, but we notice that it is
nothing more than lg 64 + 2 lg n = Θ(log n)

For f5, we recall that any power nα grows faster than log n for every α > 0, no matter how small (the
limit may be easily determined using L’Hôpital’s rule). Quadratic growth in f6 clearly follows, and
then exponential.

We recall that different exponentials are not Θ of each other; larger bases dominate, as can be seen
by the limit:

lim
n→∞

10n

2n
= lim

n→∞
5n = ∞

Showing that f7(n) = o(f8(n)) and therefore big-Oh as well.

2 - Show that (or rather, explain in detail why) the run time of the following loop is Θ(logn). You
may assume that n > 5 in every instance of running that loop:

for (int i = 5; i < n; i *= 2)

{

sum += i*i;

}

1



Solution:

We recognize that loop, where the control variable is doubled at each iteration. If the loop started at
i = 1, then it would execute lg n times (plus/minus rounding, of course, but in asymptotic notation,
that detail makes no difference).

The observation being that this loop executes that number of times minus three (because the only
difference between the two is the initial three passes to get from 1 to past 5—again, plus/minus
rounding), and so it executes Θ(log n)−Θ(1) times, which is Θ(log n)).

A more formal way to look at it could be noticing that after one iteration, i reaches 5× 2; after two
iterations, 5× 22; then 5× 23; after k iterations, we reach 5× 2k —the loop stops after k iterations if
i reaches n; that is, when 5× 2k = n, or lg 5 + lg 2k = lg n ⇒ k = lg n− lg 5, showing that the loop
executes Θ(log n) times.

3 - Determine the run time of the following function. You may assume that the value of n is a power
of 2.

void merge_sort (int * array, int n)

{

if (n == 1)

{

return;

}

merge_sort (array, n/2);

merge_sort (array + n/2, n/2);

merge (array, n); // This function works in linear time when

// measured with respect to its second argument

}

Solution:

This recursive function leads to a recurrence relation; if we use T(n) to denote its run time, simply
adding the run time of the fragments that contribute to it, we get: Θ(1) for the initial if and return;
then, twice the run time of the function for half-size arguments, or 2 ·T(n/2), and then merge, taking
Θ(n):

T(n) = 2T(n/2) + Θ(n)

The initial condition is clearly given by the recursion’s base case (if (n == 1)), which is Θ(1).

Replacing Θ(n) by a generic representative, say, c1 n for a constant c1 > 0, and solving by repeated
substitution, we obtain, after k levels of recursion:

T(n) = 2kT(n/2k) + k c1n with T(1) = c2

2



At k = lg n we reach T(1); we substitute and obtain the result:

T(n) = nc2 + lg n c1n = Θ(n log n)

4 - Determine the run time of the following function, and briefly explain why we obtain the given
result [ . . . ]

bool mystery_function (const int * primes, int n, int subset_product)

{

if (validation_function (subset_product, primes, n))

{

return true;

}

if (mystery_function (primes + 1, n-1, subset_product)

|| mystery_function (primes + 1, n-1, subset_product * primes[0]))

{

return true;

}

return false;

}

Solution:

By visual inspection, we notice that this function ends up checking all possible combinations of in-
cluding or not each prime number in a partial product (subset product), and thus would execute 2n

times, with linear time each execution, for a runtime of Θ(n 2n)

The recurrence relation that we obtain is as follows: we have Θ(n) for the validation function (it is a
condition, but evaluating it requires calling a function that we’re told has run time Θ(n)). Then, we
add twice the run time of mystery function for size n− 1—the rest of the steps are just expressions
and simple operations, each one taking Θ(1), and being a fixed number of them, they add up to Θ(1).
Thus, we have:

T(n) = 2T(n− 1) + Θ(n) with T(0) = Θ(1)

(it will be clear why in this case it is more convenient to use 0 as the initial condition—clearly, for a
problem of size 0, the cost is constant time)

Once again, repeated substitution (assuming c1n and c2 as generic representatives of the classes in the
recurrence relation) can be used to obtain the solution:

T(n) = 2(T(n− 2) + c1(n− 1)) + c1n

= 4T(n− 2) + 3c1n− 2c1

= 8T(n− 3) + 7c1n− 10c1

= · · ·
= 2kT(n− k) + (2k − 1)n+Θ(1)

3



At k = n we reach T(0) = c2, so we obtain:

T(n) = 2nc2 + (2n − 1)n+Θ(1) = Θ(n 2n)

10% Bonus Marks:

Determine the run time of the function populate array

void resize (int * & array, int size, int new_size)

{

int * new_array = new int [new_size];

for (int i = 0; i < size && i < new_size; i++)

{

new_array[i] = array[i];

}

delete [] array;

array = new_array;

}

int sum (const int * array, int size)

{

int total = 0;

for (int i = 0; i < size; i++)

{

total += array[i];

}

return total;

}

int * populate_array (int n)

{

int arr_size = 1;

int * array = new int [arr_size];

array[0] = 1;

for (int i = 1; i < n; i++)

{

if (i >= arr_size)

{

// If running out of space, double the array size

resize (array, arr_size, 2*arr_size);

arr_size *= 2;

}

// Each element gets assigned with the sum of

// all previous elements

array[i] = sum (array, i);

4



}

return array; // return pointer to allocated and populated array

}

Solution:

The function resize takes linear time (with respect to its size argument), since it has to copy these
many elements when increasing the size (which is always the case when called from populate array).

The function sum also takes linear time with respect to its size argument.

The key detail to observe is the fact that the array is resized to increase in geometric progression; as
discussed in class, at the end of the slides from 2012-01-20, this leads to an append operation that, on
average, runs in constant time (some appends require a resize, but then the following several appends
do not).

Thus, apart from all the Θ(1) contributions, the only terms we need to consider are the calls to the
function sum. We see that the first call adds 1 element, then 2, then 3, and so on, until n− 1 (when
called for element n− 1, it adds the elements 0 to n− 2—a total of n− 1 elements added).

We recognize this as the arithmetic sum from 1 to (n − 1), leading to n(n− 1)/2 operations. Thus,
populate array runs in Θ(n2).

10% Bonus Marks:

Prove, using the formal definition of Θ, that lg (n!) = Θ(n lg n)

Solution:

We need to find positive constants c1, c2, and N such that

0 6 c1n lg n 6 lg n! 6 c2n lg n

The left-most inequality is trivial, since the function is positive, and c1 is positive. The right-most
inequality is trivially achieved with c2 = 1, since lg n! 6 n lg n

Thus, we have to find c1 and N to satisfy the remaining inequality, c1n lg n 6 lg n! for all n > N .

Consider the expression

lg n! = lg n+ lg (n− 1) + lg (n− 2) + · · · + lg 3 + lg 2

and consider the first half of those terms (the logs with argument greater than n/2). Given that
lg (n/2) = lg n− lg 2 = lg (n)− 1, and given that lg is a strictly increasing function, that means that
for all k > n/2, we have lg k > lg (n)− 1.

Thus,

lg n! > lg n+ lg (n− 1) + lg (n− 2) + · · · + lg (n/2 + 1) + lg (n/2) > n

2
(lg (n)− 1)

5



Thus, if we can find c1 that satisfies the inequality c1 n lg n 6 n
2
(lg (n)− 1), then we’re done, since

the expression on the right is less than lg n!

c1 n lg n 6 n

2
(lg (n)− 1) ⇒ c1 lg n 6 1

2
(lg (n)− 1)

And this is satisfied, for someN with any c1 <
1
2
. We can easily verify this; 0 < c1 <

1
2
translates into

lg n 6 a(lg (n)− 1) with a > 1 (since a = (1/2)/c1 and c1 <
1
2
), and this means that (a− 1) lg n > 1,

which holds for n > 21/(a−1).

6


