
ECE-250 – Algorithms and Data Structures (Winter 2012)

Assignment 3 (Partial)

This is only part of the assignment, to give you the opportunity to start working on
these questions, related to topics that have been already covered in class. The rest of
the questions will be posted by Friday or possibly Monday (most likely it will be two
additional questions, and possibly a second bonus marks question).

All questions will have equal weight for the assignment grade (except for the bonus marks questions).

1 - Provide the definition of a function swap nodes that swaps two elements in a doubly-linked list
by readjusting links only (that is, the actual values stored in the two nodes are not touched or in any
way moved). The function declaration is:

template <typename Type>

void swap_nodes (Node<Type> * node1, Node<Type> * node2);

2 - Given a hash table of size 16, with hash function h(x) = x mod 16, we want to insert prime
numbers in sequence starting at 11 (i.e., 11, 13, 17, 19, 23, 29, · · · ) until two collisions occur—that
is, include the number that causes the second collision.1

Show the above procedure (insertion by insertion, showing the contents of the array after each inser-
tion) with collisions handled by:

(a) Linear probing.
(b) Double hashing, with the hash function for the jump size being hJ(x) = (x mod 10) OR 1 (that
is, we take the number modulo 10, and if it is even, we add 1, so that we can only obtain values 1, 3,
5, 7, or 9).

1 To avoid unnecessary mistakes/oversights, you can check the list of prime numbers on Wikipedia,
http://en.wikipedia.org/wiki/List_of_prime_numbers

1



10% Bonus Marks:

We want to implement an iterator class for a singly linked list with dummy or sentinel element. The
linked list and node classes are declared as follows,2 and the default constructor for List is shown
below:

template <typename Type> class Node;

template <typename Type>

class List

{

public:

class Iterator

{

public:

Iterator (Node<Type> * node, const Node<Type> * sentinel)

: d_node(node), d_sentinel(sentinel)

{}

void advance();

Type retrieve() const;

bool at_end() const;

private:

Node<Type> * d_node;

Node<Type> * d_sentinel;

};

List()

: d_head (new Node<Type>)

{

d_head->d_next = d_head;

}

Iterator begin() const;

void insert (const Type & value, Iterator at);

private:

Node<Type> * d_head;

};

template <typename Type>

class Node

{

public:

Node (const Type & value = Type());

Node<Type> * next() const;

Type retrieve() const;

private:

Type d_value;

Node<Type> * d_next;

friend class List<Type>;

};

Given this information (the “documentation” implied by the code sample), provide definitions for the
three Iterator methods (advance, to move to the next element in the list; retrieve to get the value
of the element “pointed at” by the iterator; and at end, to check if we are outside the sequence of
elements in the list).

Also, provide definitions for the two methods in class List: begin, to return an iterator pointing at
the first element in the list; and insert, to insert a new element after the node pointed at by the

2 The first line is a forward declaration, to break the mutual (circular) dependency—List needs to know about Node,
and Node needs to know about List

2



given iterator. If the list is empty, List::begin() should return an iterator for which the method
at end() returns true.

A typical loop going through the elements in the list could look like this:

List<int> values;

// ...

for (List<int>::Iterator i = values.begin(); !i.at_end(); i.advance())

{

// ...

}

3


