
ECE-250 – Algorithms and Data Structures (Winter 2012)

Assignment 3 – Suggested solutions

1 - Provide the definition of a function swap nodes that swaps two elements in a doubly-linked list
by readjusting links only (that is, the actual values stored in the two nodes are not touched or in any
way moved). You are allowed to assume a circular list with dummy element implementation (or in
any case, you are allowed to assume that neither of the two nodes is the first or last element in the
list). You may also assume that the two nodes are not consecutive elements in the list, or the same
element. Assume also that the function is declared friend, so it has access to the data member of
class Node. The function declaration is:

template <typename Type>

void swap nodes (Node<Type> * node1, Node<Type> * node2);

Solution:

It suffices in principle to just swap the appropriate “next” and “previous” pointers for the two nodes, their
previous and their next; however, one detail that we have to be careful about is the fact that when we reassign
the next or previous pointers for the two nodes, then the nodes in the sequence (that require reassigning to
point to the other node) are no longer the same.

One simple solution could be to just save the previous and next for both nodes (that’s four local vaiables;
prev1, next1, prev2, next2, corresponding the node1 and node2) before reassigning anything. This is probably
the most “economical” and safe way to implement it (and it runs in Θ(1)):

template <typename Type>

void swap_nodes (Node<Type> * node1, Node<Type> * node2)

{

Node<Type> * prev1 = node1->previous();

Node<Type> * next1 = node1->next();

Node<Type> * prev2 = node2->previous();

Node<Type> * next2 = node2->next();

prev1->d_next = node2;

next1->d_prev = node2;

prev2->d_next = node1;

next2->d_prev = node1;

node1->d_next = next2;

node1->d_prev = prev2;

node2->d_next = next1;

node2->d_prev = prev1;

}

2 - Given a hash table of size 16, with hash function h(x) = x mod 16, we want to insert prime numbers
in sequence starting at 11 (i.e., 11, 13, 17, 19, 23, 29, · · · ) until two collisions occur— that is, include the
number that causes the second collision.

1



Show the above procedure (insertion by insertion, showing the contents of the array after each insertion) with
collisions handled by:

(a) Linear probing.
(b) Double hashing, with the hash function for the jump size being hJ(x) = (x mod 10) OR 1 (that is, we
take the number modulo 10, and if it is even, we add 1, so that we can only obtain values 1, 3, 5, 7, or 9).

Solution:

(a) For each value inserted we compute its hash, which determines the bin where they’re placed— 11 and 13
hash to the same values, so they go in bins 11 and 13, respectively; 17 goes in bin 1 (hash(17) = 17 mod 16
is 1), 19 in bin 3, 23 in bin 7, then 29 collides (hash(29) = 29 mod 16 is 13, and bin 13 is already taken), so
we probe the following bins, to find bin 14 available; so 29 goes in bin 14. Then, 31 goes in bin 15, 37 in bin
5, 41 in bin 9, and 43 causes the second collision at bin 11; so, 43 is placed in bin 12.

(b) Similar procedure, but for collisions, we compute the jump size for the probing, with the secondary hash
function:

Thus, 11, 13, 17, 19 and 23 go in the exact same positions (no collisions so far). 29 collides at bin 13, and
the jump size is 9. So, we probe bin 6 (13 + 9 mod 16 = 6), which is available; so, 29 goes in bin 6. 31 goes
in bin 15, then 37 in bin 5, 41 in bin 9, and 43 causes the second collision, at bin 11. The jump size is 3, so
we probe bin 11+3 = 14, which is available; so, 43 goes in bin 14.

3 - Based on the code for class template Node<Type> from the course slides for 2012-02-03 (Tree implemen-
tations and traversal), sketch a C++ function (a standalone function, as opposed to a method of class Node)
that receives two nodes (as in, two pointers to Node<Type> objects) and returns the nearest common ancestor
(i.e., the node with largest depth that is an ancestor of both nodes). Notice that in this case, the function
is not a friend function of class Node.

The function declaration should be:

template <typename Type>

Node<Type> * nearest common ancestor (const Node<Type> * n1, const Node<Type> * n2);

The function must run in O(n), where n is the number of nodes in the tree, and must use O(1) storage.

Solution:

The key idea is that if both nodes are at the same depth, then we advance (advance meaning move one
level up; i.e., to the parent) for both simultaneously, and both will hit the nearest common ancestor
at some point (specifically, both at the same iteration).

So, we first determine the depths, and make the deeper one advance until getting to the same depth
as the other one; then proceed as per the above description.

template <typename Type>

Node<Type> * nearest_common_ancestor (const Node<Type> * n1, const Node<Type> * n2)

{

int depth1 = 0;

const Node<Type> * n = n1;

while (!n->is_root())

{

++depth1;

2



n = n->parent();

}

n = n2;

while (!n->is_root())

{

++depth2;

n = n->parent();

}

for (int i = 0; i < std::abs(depth1-depth2); i++)

{

if (depth1 > depth2)

{

n1 = n1->parent();

}

else if (depth2 > depth1)

{

n2 = n2->parent();

}

}

while (n1 != n2)

{

n1 = n1->parent();

n2 = n2->parent();

}

return n1;

}

4 - Given the tree shown below:

(a) Identify all the leaf nodes and all the internal nodes.
(b) List the nodes with depth 0, 1, 2, and 3.
(c) What is the height of the tree? What is the height of the subtrees with root B and C?
(d) For the nodes B, C, and D: list the parent, the children, the siblings, all the ancestors, and all
the descendants.

3



(e) What is the longest path, and what is its length? (explain why) If there is more than one, list all
of them (explaining why).

Solution:

(a) Internal nodes are the ones that have some children (one or more); leaf nodes are those that have
no children—A,B,C,D,G,I; and E,F,H,J,K,L, respectively.

(b) Depth 0 is the root (always the case, by definition). Depth 1 are the root’s children, B, and C;
depth 2 are D, E, F, and G; and depth 3 are H, I, J, K.

(c) The deepest node is L, with depth 4 (path from root is A,B,D,I,L— four “links”, telling us that
its depth is 4), and thus the height of the tree is 4. Since this height is reached through B, the height
of the subtree with B as root has to be one less than the previous one (and by visual inspection we
confirm that it is 3—path being B,D,I,L). For the subtree below C, the height is 2.

(d) B: parent is A, children are D,E,F, sibling is C (since it’s the only one with parent A). Ancestors
include itself (as do descendants!); so ancestors of B and A,B; descendants are B,D,E,F,H,I,L. Notice
that ancestors are basically the nodes in the path from root to the node, and descendants are all the
nodes in the subtree with root being the given node. I won’t list the answers for C, and D—same
details as here.

(e) We recall that a path is a sequence of nodes where each pair of consecutive nodes have the
relationship parent/child—so, we’re not talking about the “path” going from L to J or K (passing
through A and continuing down to the C branch).

With this in mind, the longest path is the one defining the height of the tree, which is A,B,D,I,L.

4



10% Bonus Marks:

We want to implement an iterator class for a singly linked list with dummy or sentinel element. The
linked list and node classes are declared as follows,1 and the default constructor for List is shown
below:

template <typename Type> class Node;

template <typename Type>

class List

{

public:

class Iterator

{

public:

Iterator (Node<Type> * node, const Node<Type> * sentinel)

: d_node(node), d_sentinel(sentinel)

{}

void advance();

Type retrieve() const;

bool at_end() const;

private:

Node<Type> * d_node;

Node<Type> * d_sentinel;

};

List()

: d_head (new Node<Type>)

{

d_head->d_next = d_head;

}

Iterator begin() const;

void insert (const Type & value, Iterator at);

private:

Node<Type> * d_head;

};

template <typename Type>

class Node

{

public:

Node (const Type & value = Type());

Node<Type> * next() const;

Type retrieve() const;

private:

Type d_value;

Node<Type> * d_next;

friend class List<Type>;

};

Given this information (the “documentation” implied by the code sample), provide definitions for the
three Iterator methods (advance, to move to the next element in the list; retrieve to get the value
of the element “pointed at” by the iterator; and at end, to check if we are outside the sequence of
elements in the list).

Also, provide definitions for the two methods in class List: begin, to return an iterator pointing at
the first element in the list; and insert, to insert a new element after the node pointed at by the

1 The first line is a forward declaration, to break the mutual (circular) dependency—List needs to know about Node,
and Node needs to know about List

5



given iterator. If the list is empty, List::begin() should return an iterator for which the method
at end() returns true.

Solution:

Couple of key details: the sentinel element defines the end of the list; when we reach it, we’re outside
the range, and so at end() should return true then.

begin() should return an iterator pointing at the first element in the list— this of course excludes the
sentinel element; so, we should point to the sentinel’s next; with the nice side-effect that if the list
is empty, sentinel’s next is itself, and so we return an iterator for which at end() will return true!

template <typename Type>

void List<Type>::Iterator::advance()

{

d_node = d_node->next();

}

template <typename Type>

Type List<Type>::Iterator::retrieve() const

{

return d_node->retrieve();

}

template <typename Type>

bool List<Type>::Iterator::at_end() const

{

return d_node == d_sentinel;

}

// List methods

template <typename Type>

List<Type>::Iterator List<Type>::begin() const

{

return Iterator (d_head->next(), d_head);

// d_head points to the dummy/sentinel node

}

template <typename Type>

void List<Type>::insert (const Type & value, List<Type>::Iterator at)

{

Node<Type> * added = new Node<Type>(value);

added->d_next = at.d_node->next();

at.d_node->d_next = added;

}

6


