
ECE-250 – Algorithms and Data Structures (Winter 2012)

Assignment 4 – Suggested solutions

1 – (a) Insert the following values (in the given order) into an initially empty min heap: 46, 34, 83,
75, 25, 57, 93, 27, 17.

You need to justify the steps, but a single sentence describing the steps suffices—provided that all
the key details are indeed described (you still need to show the step-by-step contents of the heap, after
each insertion).

(b) Dequeue the elements, showing the contents of the heap after each removal.

Solution:

(a) The first value is trivially inserted. Then, for the others, we place the element as the last element
in a complete binary tree (i.e., following a breadth-first traversal pattern), and adjust (percolating
up).

34 is inserted as the left child, then it is swapped with the root. 83 is then inserted as the right child,
and since 83 > 34, no adjustment is needed. 75 is then inserted as the left of 46, and no adjustment
is needed. 25 is inserted as the right child of 46, requiring a swap with 46, then requiring a swap with
the root. So far, the heap would be as shown below:

57 is then inserted as the left child of 83, requiring a swap with 83; then, 93 is inserted as the right
child of 57, requiring no swaps. 27 is inserted as the left child of 75, requiring a swap with 75, then a
swap with 34. Finally, 17 is inserted as the right child of 34, requiring swaps all the way to the root.
The final contents is:

(b) Since the removal strategy is not explicitly specified, there are several possible approaches that
could be used here. We could go for the simple one, that does not take care of maintaining a complete
binary tree. This is the easiest way: we simply remove the root, and promote the lower of its children,
repeating then for that removed node, promoting the lower of its children, all the way to a leaf node.

1

The other approach would require taking the “last” element (going with the breadth-first traversal
pattern) and placing it at the root, then percolating down.

I’ll just show the first two removals using each of these strategies:

• Simple approach:

Removing 17 requires promoting 25 (the lower of 25 and 57); then, removing 25 requires pro-
moting 27, and then, promoting 34. By pure coincidence, this is the same outcome as if we had
used the other strategy.

Then, removing 25 requires promoting 27, which requires promoting 34 (the lower of 34 and 46),
which then requires promoting 75 (the only child at this point)

• Maintaining a complete binary tree:

Removing 17 is done by taking the last element (34) and placing it at the root, then percolating
down—swapped with 25, then swapped with 27.

Removing 25 then places 75 at the root, to be percolated down—again by coincidence it ends
up producing the exact same outcome (emphasis on the fact that it is a coincidence; there’s no
guarantee of which path the swaps are going to take, since the lower of the children can be either
the left child or the right child).

2 – (a) Dequeue each of the elements from the following min heap represented as an array (you must
show the procedure with the processing as an array, including obtaining the subscripts for parents and
children, and not drawing the “tree view” of the heap).

1 2 5 7 6 12 8 18 11 31 13 21 29 9 19

(b) Convert the following array of unsorted values into a min heap (in-place, with a linear time
procedure): {48, 23, 17, 26, 14, 87, 53, 89, 32, 49, 95, 12}

Solution:

Since we are representing the heap as an array, we must always maintain a complete binary tree,
which means that we must always move the last element to the root position, then percolate it down
(as opposed to simply remove the root, and then promote the lower of its children, and so on until
promoting some leaf node—this does not maintain a complete binary tree)

Dequeueing 2 moves 19 to the root, so we percolate it down; position 1, means that its children are
at position 2 and 3, so we swap it with 5; then, from position 2, its children are at position 4 and 5;
so we swap with 6. Then, from position 4, its children are at positions 8 and 9; so we swap with 11,
and this one is already a leaf node (size is now 13 elements, and from position 8, the children would
be at positions 16 and 17). After removing 2, the heap’s contents is as follows:

1 5 6 7 11 12 8 18 19 31 13 21 29 9 1

2

Then, dequeueing 5 moves 9 to the root; swap it with 6, then swap it with 11, and that’s already its
final position, since its children are 19 and 31 (both greater than 9). The contents of the heap is as
follows:

1 6 11 7 9 12 8 18 19 31 13 21 29 1 1

Dequeueing 6 moves 29 to the root; then we swap it with 7; from position 3, children are at positions
6 and 7 (values 8 and 18), so we swap with 8, and that one is now a leaf (its child was 29, but at this
point, 29 was removed from the back, leaving 8 as a leaf, since there are 11 elements).

1 7 11 8 9 12 29 18 19 31 13 21 1 1 1

And so on ...

(b) The heapification procedure does this. We start at the back and move to its parent. From
there, moving backward, we percolate down each element as needed.

From position 12, its parent is at position 12÷ 2 = 6, so we swap 87 with 12 (its only child, so we
move the larger value down):

{48, 23, 17, 26, 14, 12, 53, 89, 32, 49, 95, 87}

Then, 14 is swapped with 49, the lower of its children (49 and 95):

{48, 23, 17, 26, 14, 12, 53, 89, 32, 49, 95, 87}

26 does not need to be swapped (its children are 89 and 32), then 17 is swapped with 12, and it
doesn’t need to be swapped any further (its only child is 87):

{48, 23, 12, 26, 14, 17, 53, 89, 32, 49, 95, 87}

23 is swapped with 14, and it is at the correct position (children are 49 and 95), and 48 is swapped
with 12, then with 17, then it is at the correct position, since its child is 87. The contents after
heapification is:

{12, 14, 17, 26, 23, 48, 53, 89, 32, 49, 95, 87}

3 – Describe a traversal strategy for a min-heap that visits every element that is less than a given
value. The run time must be O(m), where m is the number of elements that satisfy the condition.

2% Bonus Marks: Write a C++ function that implements that traversal to print the values (you
may assume a Binary node class as described in class—of course, with the assumption of the min
heap constraints)

Solution:

The idea is similar to a depth-first traversal (notice that we sort of discard the possibility of
breadth-first based on the intuition that for a heap, there is absolutely no relationship between nodes
“sideways”).

3

If we are traversing the entire tree in a depth-first manner, we know that the defining property of a
min heap tells us that if at some node we see a value that is not less than the given value, we have
the guarantee that everything below that node will not be less than the given value either (since
everything below that node is necessarily greater than the node).

So, this condition (finding a node that is greater than the given value) is the “stop” condition for the
recursion— in any case, it is the condition that determines that we do not continue descending to
any children (of course, that, combined with the possibility of reaching a leaf node).

As for showing that this is O(m), we observe that we only look at nodes that don’t match the
condition when they’re the children of a node that matches the condition. Thus, in addition to the
m nodes matching the condition, we will visit at most 2mL, where mL is the number of nodes that
match the condition and for which some of its children do not match the condition. Since mL 6 m,
then m+ 2mL 6 3m = O(m).

A C++ implementation would be as follows (as an example, the procedure outputs the values being
visited):

template <typename Type>

void heap_trav_lt (const Binary_node<Type> * tree, const Type & value)

{

if (tree == NULL || tree->retrieve() >= value)

{

return;

}

cout << "Visited " << tree->retrieve() << endl;

heap_trav_lt (tree->left(), value);

heap_trav_lt (tree->right(), value);

}

4 – For the following array of values: {48, 23, 17, 26, 14, 87, 53, 89}:

(a) Sort the values (showing the procedure, step-by-step), using merge sort. For the recursion’s base
case, you may use the point where the array size reaches two, at which point sorting boils down to a
conditional swap of the values.

(b) Run the first iteration of quick sort, using median of three as the approximation for the median
(that is, the step that ends with every value in the first chunk being less than any of the values in
the second chunk).

Show the step-by-step procedure.

Solution:

(a) We split into sub-sequences {48, 23, 17, 26} and {14, 87, 53, 89} then, into {48, 23}, {17, 26},
{14, 87}, and {53, 89}. Handling the base case for each of these 2-element sub-sequences, we get
sorted arrays {23, 48}, {17, 26}, {14, 87}, and {53, 89}. We merge the first two; starting at the

4

beginning, we pick 17 (the lower of 23 and 17) and advance; then 23 (the lower of 23 and 26), then
26 (the lower of 26 and 48). For the other branch of the recursion, we start with 14 (the lower of 14
and 53) and advance; then 53 (the lower of 53 and 87), then 87 (the lower of 87 and 89), and finally
89; the merged sub-sequences are now {17, 23, 26, 48} and {14, 53, 87, 89}. To merge these two, we
start with 14 (the lower of 17 and 14), then 17 (17 / 53), then 23 (23 / 53), then 26 (26 / 53), then
48 (48 / 53), and then the rest from the second sequence.

(b) For quick sort, we choose the pivot as the median of the first, middle, and last elements—48, 26,
and 89; median 48. We put 48 temporarily aside, move 26 to the first position, and 89 to the middle:

{26, 23, 17, 89, 14, 87, 53, }

Start scanning forward from second position looking for a value greater than 48; find 89. Scan
backward from second-to-last position looking for a value less than 48; find 14. Swap these two
values; repeating the procedure we’ll find the same two values again, except that now the “pointers”
are reversed, so we finish the iterations; we take the element at the larger pointer and move it to the
end, and place the pivot there:

{26, 23, 17, 14, 48, 87, 53, 89}

The next recursive steps would be: sort the sequences {26, 23, 17, 14} and {87, 53, 89}.

5% Bonus Marks – Write a C++ function that determines whether a given binary tree is a min
heap.

Solution:

The function is almost a direct transcription of our recursive definition of a heap: a non-empty
binary tree is a min heap if the root is lower than either one of its children, and both subtrees are
themselves min heaps:

template <typename Type>

bool is_min_heap (const Binary_node<Type> * tree)

{

if (tree == NULL)

{

return true;

}

if (tree->left() != NULL && tree->left()->retrieve() < tree->retrieve()

||

tree->right() != NULL && tree->right()->retrieve() < tree->retrieve())

{

return false;

}

return is_min_heap (tree->left()) && is_min_heap (tree->right());

}

5

5% Bonus Marks – Prove that removal (of the root node) from a heap has worst-case run time
Ω(log n); that is, prove that removal from a heap can not have a worst-case run time faster than
Θ(log n).

Solution:

Two-word Proof: Heap sort :-)

(that should, in principle, be proof enough—but since this is an assignment and we want to be
formal about things, then we would expand)

The idea is that we prove the statement by reduction from sort— the reduction being essentially the
heap sort procedure; if we could remove from a heap faster than Θ(log n), then we would execute
heap sort faster than Θ(n log n), since we convert to a heap in linear time, then require n removals
from the heap.

6

