
ECE-250 – Algorithms and Data Structures (Winter 2012)

Tutorial 2 (2012-01-26) – Suggested solutions

1 - Assuming well-behaved positive functions such as those that we encounter when analyzing algo-
rithms, show that:

(a) Little-oh defines a partial ordering.
(b) Big-Oh defines a weak ordering.
(c) Big-Theta is an equivalence relation (one of the three conditions was already done during

last week’s tutorial session).

Solution:

(a) The relationship little-oh is antisymmetric; if f(n) = o(g(n)), then g(n) 6= o(f(n)).

It is transitive: if f(n) = o(g(n)) and g(n) = o(h(n)), then there exist N1 > 0 and N2 > 0, and N
being the larger of N1 and N2 such that for every c > 0, we have:

0 6 f(n) 6 cg(n) ∀ n > N

and
0 6 g(n) 6 ch(n) ∀ n > N

Which means that
0 6 f(n) 6 c2h(n) ∀ n > N

This shows that f(n) = o(h(n)) (for every c′ > 0, this holds, since the two other conditions must hold
for c =

√
c′ — since they must hold for every c > 0)

Lastly, the relation does not exhibit totality— it is not the case that for every f(n) and g(n), it must
be the case that either f(n) = o(g(n)) or g(n) = o(f(n)) (f(n) = g(n) is a trivial example to show that
this is the case; more in general, any functions that are Θ of each other are a valid example)

(b) For this, we need the condition that the functions are nice and well-behaved; otherwise, we could
find pairs of functions such that neither one is big-Oh of the other one (meaning that no total order
is possible).

Assuming that, this is clearly a linear or total order for the equivalence classes given by the functions
that are Θ of each other.

(c) The relationship is obviously reflexive (f(n) = Θ(f(n)); trivially true with c1 = c2 = 1 in the
definition).

We already showed that it is symmetric (last week’s tutorial)

It is transitive:

f(n) = Θ(g(n)) ⇒ ∃ c1 > 0, c2 > 0, N1 > 0 | 0 6 c1g(n) 6 f(n) 6 c2g(n) ∀ n > N1

g(n) = Θ(h(n)) ⇒ ∃ c′1 > 0, c′2 > 0, N2 > 0 | 0 6 c′1h(n) 6 g(n) 6 c′2h(n) ∀ n > N2
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From these two conditions, if we let N be the larger of N1 and N2, we see that

0 6 c1c
′
1h(n) 6 f(n) 6 c2c

′
2h(n) ∀ n > N

Showing that f(n) = Θ(h(n))

2 - Determine the run time (worst-case only) of the following operations:

(a) Assuming that there are always at least one negative value and at least one positive value in the
array, find the first negative value in an array of:

(i) Random values
(ii) Ordered values in ascending sequence
(iii) Ordered values in descending sequence

(b) Same as part (a), but for a linked list

(c) Insert an element into a singly-linked list with random values:
(i) After a given element (i.e., you’re given a pointer to a node)
(ii) Before a given element
(iii) Exactly at the middle (plus/minus rounding if the list contains an odd number of elements)

Solution:

(a-i) Worst-case is clearly Θ(n), as we may need to traverse the entire array to find the negative value
in the last position.

(a-ii) Worst-case is clearly Θ(1); since we have the guarantee that there is at least one negative value,
when ordered in ascending sequence the first element will necessarily be negative.

(a-iii) Since the values are in order, we can always use binary search (even if not looking for a specific
value, we can still use binary search), so we get Θ(log n).

Do notice that the argument that we start from the end (which we can, since it is an array) and
thus we find it in constant time is not at all valid; if we search backwards, we find the last negative
number; we don’t know how many there are, and so we don’t know how many times we need to move
backwards.

(b) The only difference is in (iii), since the linked list does not accept binary search. Thus, regardless
of searching foraward or backwards (in case it is a doubly-linked list), worst-case will necessarily be
Θ(n); if we start at the beginning and search forward, the only negative value might be at the end;
and if we start at the tail and search backwards, the worst-case is a single non-negative value at the
first position.

(c-i) This is clearly constant time (we do that in a fixed number of constant-time operations)

(c-ii) The only way to accomplish this is to start at the beginning and move forward until we reach
the element before the one we’re given; worst-case occurs when the given element is the last, thus we
have Θ(n)

(c-iii) Since we do not have random access, we need to start at the beginning and “count” our way to
the middle element (advance n/2 times). Depending on whether or not we can obtain the size of the
list in constant time, we may need a complete scan of the list to determine the size first. Either way,
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we have Θ(n) always (it does not depend on the data).

3 - Compare (a discussion suffices; no need to formally determine the actual figures) the run times (if
applicable, discuss the “actual time” performance) of operations on a queue (enqueue and dequeue)
when we implement it in terms of:

(a) An array (linear array)
(b) A circular array or circular buffer
(c) A linked list

Solution:

(a) A linear array requires either continuously reallocating, if we keep track of beginning and end of
the queue, or continuously shifting all the elements (each time we dequeue). And even then, if we do
many enqueues and very few dequeues, we may need to reallocate to accommodate for the queue’s
growth. This is a non-trivial probabilities problem, so we’ll be happy with an intuition-based rough
estimate of Θ(n) either way.

The enqueue and dequeue operations themselves are, however, most efficient when using a linear
array—directly access an element by subscript, and update one variable.

(b) With a circular array, no shifting of elements is required; reallocation might still be needed if
enqueues and dequeues are not balanced. Though access to elements and updates of the begin and
end indicators are still constant time, they are slower, in “actual time” performance, than for a linear
array, since we require to do arithmetic, including a modulo operation.

Reallocations are no different than with respect to the linear array.

(c) The big advantage with a linked list is that we don’t worry about reallocations — the queue grows
naturally as the linked list does, with constant time for each operation. We do not need to keep
pointers or indexes for begin or end, since these are implicitly present for a linked list.

We do, however, have storage overhead — there is a per-element Θ(1) storage — compared to either
version using arrays.

4 - (If enough time) Determine the run time of the following function, operating on a polygon (a
sequence of points) represented as an array of point objects (we have some class Point to represent
the points/vertices of the polygon):

The function needs to check a condition for every pair of points; the condition is symmetric (i.e., if the
condition is met for points pi,pj, then it is also met for the pair pj,pi), and it is checked in constant
time. It is also known that the condition is never met between a point and the five points that follow.

Determine the runtime of a function meeting the above requirements.

Solution:

There are two approaches here. The basic principle being that you loop through the points in the
array, and for each point pi, you check the condition with the points that follow only (since the
condition is symmetric, so the pairs pk, pi for k < i were already checked in previous iterations of the

3



loop).

So, if we use nested loops, the outer loop going from point 1 to point n− 1 and the inner loop going
from point i + 1 to point n (where i is the current iteration for the outer loop), then we get an
arithmetic sum (first iteration, n checks, second iteration, n− 1 checks, then n− 2, and so on). This
is Θ(n2)

But there is one additional optimization: we do not need to check the condition for the 5 points that
follow (i.e., at iteration i, we should check points i + 6 to n). That means five fewer iterations of
each execution of the inner loop with respect to the unoptimized form, and of course, the outer loop
runs five times fewer, since we only need to get to n − 6. So, this is 5(n − 6) fewer times than the
unoptimized form, which is Θ(n2), and the result is clearly Θ(n2).

The other approach would be simply to do the sums exactly; we would get something like an arithmetic
sum going from 1 to n− 5, and that would be (n− 5)(n− 4)/2, and we see that this is Θ(n2).
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