
ECE-250 – Algorithms and Data Structures (Winter 2012)

Assignment 2

Due on Friday, January 27, in class.

All questions have equal weight for the assignment grade (except for the bonus marks questions).

1 - Place the following functions in ascending order by asymptotic behaviour, justifying for each
case (you may use either limits or the formal definition to justify). That is, put them in sequence
f1, f2, f3, · · · such that fk(n) = O(fk+1(n)):

f(n) = 10n2 + 1
f(n) = 5
f(n) = ln (n+ 1)
f(n) = 2n

f(n) = 10n

f(n) = log10 n
f(n) = lg (64n2)
f(n) = n0.00001

2 - Show that (or rather, explain in detail why) the run time of the following loop is Θ(logn). You
may assume that n > 5 in every instance of running that loop:

for (int i = 5; i < n; i *= 2)

{

sum += i*i;

}

3 - Determine the run time of the following function. You may assume that the value of n is a power
of 2.

void merge_sort (int * array, int n)

{

if (n == 1)

{

return;

}

merge_sort (array, n/2);

merge_sort (array + n/2, n/2);

merge (array, n); // This function works in linear time when

// measured with respect to its second argument

}

1

4 - Determine the run time of the following function, and briefly explain why we obtain the given
result (that is, describe the typical behaviour that explains the given run time class— for example,
binary search is a typical program’s behaviour that leads to logarithmic time; checking all the values
for each iteration over each of the values is a typical behaviour exhibiting quadratic time, etc.).

Doesn’t really matter what the function does (in fact, I doubt that it would do anything useful). The
parameter primes “magically” contains the list of the first n prime numbers, and since it is given to
the function, the run time does not include the time to load those values (if any).

You may assume that validation function runs in linear time measured with respect to its second
parameter. You may also assume that the main program (or in any case the initial caller) will always
call the function passing a value of 1 as the subset product parameter.

bool mystery_function (const int * primes, int n, int subset_product)

{

if (validation_function (subset_product, primes, n))

{

return true;

}

if (mystery_function (primes + 1, n-1, subset_product)

|| mystery_function (primes + 1, n-1, subset_product * primes[0]))

{

return true;

}

return false;

}

2

10% Bonus Marks:

Determine the run time of the function populate array

void resize (int * & array, int size, int new_size)

{

int * new_array = new int [new_size];

for (int i = 0; i < size && i < new_size; i++)

{

new_array[i] = array[i];

}

delete [] array;

array = new_array;

}

int sum (const int * array, int size)

{

int total = 0;

for (int i = 0; i < size; i++)

{

total += array[i];

}

return total;

}

int * populate_array (int n)

{

int arr_size = 1;

int * array = new int [arr_size];

array[0] = 1;

for (int i = 1; i < n; i++)

{

if (i >= arr_size)

{

// If running out of space, double the array size

resize (array, arr_size, 2*arr_size);

arr_size *= 2;

}

// Each element gets assigned with the sum of

// all previous elements

array[i] = sum (array, i);

}

return array; // return pointer to allocated and populated array

}

3

10% Bonus Marks:

Prove, using the formal definition of Θ, that lg (n!) = Θ(n lg n)

Hint: Think of the “intuition” that we could use to see why this is the case:

lg (n!) = lg n+ lg (n− 1) + · · · + lg 3 + lg 2

But then, the function lg grows so slowly, that for the first half of those terms (up to lg (n/2)), the
value of the function practically has not changed... So that’s at least n/2 times that we’re adding
something that is very close to lg n—so, we should be sufficiently close to a multiple of n lg n that we
might even neglect the rest of the terms.

Comment about the relevance of the above:

When proving that any sort algorithm can not run faster than n log n, the argument uses the fact
that there are n! (n factorial) permutations, one of them being the one with the values sorted, and
if we put those permutations in order (some lexicographical order), then that means that we can do
binary search on the set of possible permutations—and clearly, there is no way that we can do better
than binary search.

Thus, we can find the right permutation in lg n! (binary search on a set of size n!), and no faster than
that, asserting this as a lower-bound. So, it seems interesting to show that this is asymptotically
equivalent to n log n

4

