
ECE-250 – Algorithms and Data Structures (Winter 2012)

Suggested solutions for some of the problems

Mathematical background

1 – Prove that if a number n has the property that n mod 4 = 3, then the last two bits (the
least-significant) are 11.

Solution:

This is similar to the argument in class (talking about double hashes) about how a number is odd if
and only if its LSB is 1. Here, we also go for a direct proof, proceeding as follows: consider a number
n and its m-bits binary representation:

n =
m∑
k=0

bk2
k

We’re interested in proving something about the last two digits (the LSB), so it makes sense that we
pull those out from the summation:

n =
m∑
k=0

bk2
k = b0 + 2b1 +

m∑
k=2

bk2
k = b0 + 2b1 + 22

m∑
k=2

bk2
k−2

Since b0 and b1 can only take values 0 or 1, then clearly, b0 + 2b1 < 4, so we can write n = 4 · S + r,
where r , b0 + 2b1 and S is the sum in the above equation.

Since 0 6 r < 4, then clearly the remainder of the division of n by 4 is precisely r (if you don’t
like the “informality” of this argument, you probably remember the Division Algorithm from your
Discrete Math course?). Since n mod 4 = 3, we directly obtain the result (r = 3, and r has binary
representation given by the two least-significant bits of n, so these two bits must be both 1)

2 – Consider an algorithm enclose polygons that receives a set of n simple polygons {P1, P2 · · · , Pn}
as input (see first paragraph and examples in http://en.wikipedia.org/wiki/Simple_polygon).

The algorithm outputs a sequence of polygons Pk1 , Pk2 , · · · , Pkn where the polygon Pki is entirely
contained inside polygon Pki+1

∀ 1 6 i < n. That is, it outputs the same set of input polygons, but
in sequence such that every polygon is entirely contained in the next polygon in the sequence.

If creating such a sequence is not possible (e.g., if there are polygons that are not entirely contained
in either one of the remaining polygons), then the algorithm outputs null.

Prove that the worst-case runtime of algorithm enclose polygons is Ω(n log n). That is, prove that
this algorithm can not have a worst-case runtime better than Θ(n log n).

Solution:

Not surprisingly, we prove the statement by reduction; specifically, reduction from sort. We know
that sorting n arbitrary values takes Ω(n log n), so we will reduce sorting to enclose polygons (with

1



a linear time reduction), showing that if enclose polygons could execute faster than n log n, then we
would have a sorting algorithm faster than n log n, which we know is not possible.

The reduction is quite straightforward: given n values {x1, x2, · · · , xn}, we construct n polygons that
are all squares. That is, polygon i is given by the vertices Pi = {(xi, xi), (−xi, xi) (−xi,−xi) (xi,−xi)}

We feed these polygons to algorithm enclose polygons, relying on the fact that larger values of xi

produce polygons that enclose those produced by the smaller values of xi; thus, the output gives us
the polygons in ascending order by their sides, meaning that we can directly obtain the input values
in ascending order.

The reduction clearly takes linear time, so it does prove that enclose polygons has run timeΩ(n log n).

This last detail is always important in a proof by reduction: if we denote the time for our sorting-in-
terms-of-enclose polygons algorithm by TS(n), the run time of enclose polygons by TEP(n) and the
run time of the reduction by TR(n), then, since TS(n) = TR(n) +TEP(n) (since our sorting algorithm
involves the reduction and an invocation to enclose polygons), then we know that

TR(n) + TEP(n) > n log n (1)

but then, if TR(n) > n log n, then Eq.(1) holds regardless of the run time of enclose polygons, and
so that statement would say absolutely nothing about such run time.

If, however, TR(n) < n log n, then Eq.(1) does imply that TEP(n) > n log n (what we want to prove).
(we should use the appropriate Landau symbols in Eq.(1) and the following lines, instead of inequality
symbols— I wrote it like this to make the idea more clear).

Note: there is a (not-so-subtle) detail that ruins the above argument— I’ll leave it up to you to figure
out that detail, and to fix the proof (I estimate that that the more challenging part is realizing what
the problem is; once noticing, what to do to fix the proof follows quite immediately).

Asymptotic and Algorithm Analysis

5 – What are the run times of the following loops? (in all cases, assume that n is sufficiently large if
it needs to be assumed for the problem to make sense)

for (int i = 0; i < n*n; i++)

{

sum += i;

}

for (int i = 0; i*i < n; i++)

{

sum += i;

}

for (int i = n*n; i > 1; i /= 2)

{

2



if (i > 16)

{

sum += i;

}

}

for (int i = 0; i < n; i++)

{

for (int j = 0; j < n; j++)

{

for (int k = j+1; k < n; k++)

{

sum += i*j*k;

}

}

}

Solution:

In all cases, we observe that everything inside the loop is Θ(1) (since they’re just arithmetic operations,
which we know execute in constant time). Also, the condition of the loops are all constant-time
expressions.

The first one is clearly Θ(n2) (the loop executes n2 times); the second loop executes
√
n times, so we

get Θ(
√
n ).

For the third one, since at each pass of the loop we divide i by 2, then after k passes, i = n2

2k
. The

loop stops when i = 1, or n2 = 2k ⇒ k = lg n2. That is, the loop executes lg n2 times (= 2 lg n),
thus, we get Θ(log n)

For the fourth one, going from the innermost loop and working our way out, we observe that the
innermost loop executes n−j−1 times; that is, the first pass of the middle loop, we execute n−1 times,
then n−2 times, then n−3 and so on. If we add these together, we obtain 1+2+3+ · · · +(n−2)+(n−1),

which we recognize (right?) as n(n−1)
2

. So, the middle loop executes in Θ(n2); since that one is
executed n times, then we get a total run time of Θ(n3)

Trees

12 – Write a C++ function to update the stored heights in an AVL tree. The function receives the
node (a pointer to Binary node<Type>) where the change happened (the inserted node, or the parent
of the removed node).

Solution:

Two key details here (I’ll just mention the two details—you should be able to work on the solution):

(1) The only nodes for which the height can change are the ones on the path from the root node to

3



the node where the change happened.

(2) The height for those nodes can change (it does not necessarily change).

The reason for (1) is quite simple: For each sub-tree, if a node is inserted in one of its sub-trees, then
the height for the other sub-tree can not change. Since this applies to all sub-trees in the tree, it is
clear that only the nodes in the path from the root node to the point of change are the ones that can
be affected.

The reason for (2) is that the height for a node is one plus the larger of the heights of the two sub-trees.
If a node was added in the sub-tree that had the lower height, then there will be no change (since the
height is determined by the other sub-tree).

15 – Given a weight-balanced binary search tree, we want to store in each node the weight of the tree
rooted at the node (similar to what we do with AVL trees with the height). Write a C++ function to
update these stored weights when the tree is changed. The function receives a pointer to the inserted
node, or the parent of the removed node (same comments as in second paragraph of question 12).

Solution:

Again, I’ll just mention the key detail here:

Unlike for question 12, here we are storing weights, and the weight of a tree is 1 plus the sum of the
weights of the two sub-trees; that means that the weight for all the nodes in the path from the root
node to the added or removed node do change. If we added a node, all of the weights in the path
from the root to it are increased by 1; and if removed, the all the weights in the path from root to the
parent of the deleted node are decreased by 1.

4


