Next, recall that our goal is to partition all remaining elements based on whether they are smaller than or greater than the pivot.

We will find two entries:
- One larger than the pivot (staring from the front)
- One smaller than the pivot (starting from the back)
which are out of order and then correct the ordering
- *i.e.*, swap them
Quick Sort

Implementation

Continue doing so until the appropriate entries you find are actually in order.
The index to the larger entry we found would be the first large entry in the list (as seen from the left).

Therefore, we could move this entry into the last entry of the list.
We can fill this spot with the pivot.
Quick Sort Example

First, we examine the first, middle, and last entries of the full list. The span below will indicate which list we are currently sorting.

pivot =
57 70 97 38 63 21 85 68 76 9 81 36 55 79 74 85 16 61 77 49 24
Quick Sort Example

We select 57 to be our pivot
 - We move 24 into the first location
Quick Sort

Quick Sort Example

Starting at the 2nd and 2nd-last locations:

- we search forward until we find $70 > 57$
- we search backward until we find $49 < 57$

pivot = 57

24 70 97 38 63 21 85 68 76 9 81 36 55 79 74 85 16 61 77 49
Quick Sort Example

We swap 70 and 49, placing them in order with respect to each other.
Quick Sort Example

We search forward until we find \(97 > 57\)
We search backward until we find \(16 < 57\)
Quick Sort Example

We swap 16 and 97 which are now in order with respect to each other

pivot = 57
Quick Sort Example

We search forward until we find $63 > 57$
We search backward until we find $55 < 57$

pivot = 57

![Quick Sort Example Diagram](image-url)
Quick Sort Example

We swap 63 and 55

pivot = 57
Quick Sort Example

We search forward until we find \(85 > 57 \)
We search backward until we find \(36 < 57 \)
Quick Sort Example

We swap 85 and 36, placing them in order with respect to each other.
Quick Sort Example

We search forward until we find \(68 > 57 \)
We search backward until we find \(9 < 57 \)
Quick Sort Example

We swap 68 and 9

pivot = 57
Quick Sort Example

We search forward until we find \(76 > 57 \)
We search backward until we find \(9 < 57 \)
 - The indices are out of order, so we stop

\[
\begin{array}{cccccccccccccccc}
24 & 49 & 16 & 38 & 55 & 21 & 36 & 9 & 76 & 68 & 81 & 85 & 63 & 79 & 74 & 85 & 97 & 61 & 77 & 70
\end{array}
\]
Quick Sort Example

We move the larger indexed item to the vacancy at the end of the array
We fill the empty location with the pivot, 57
The pivot is now in the correct location
Quick Sort Example

We will now recursively call quick sort on the first half of the list. When we are finished, all entries < 57 will be sorted.
Quick Sort Example

We examine the first, middle, and last elements of this sublist.

pivot =

[24, 49, 16, 38, 55, 21, 36, 9, 57, 68, 81, 85, 63, 79, 74, 85, 97, 61, 77, 70, 76]
Quick Sort Example

We choose 24 to be our pivot
We move 9 into the first location in this sub-list
Quick Sort Example

We search forward until we find $49 > 24$
We search backward until we find $21 < 24$
Quick Sort Example

We swap 49 and 21, placing them in order with respect to each other.
Quick Sort Example

We search forward until we find $38 > 24$
We search backward until we find $16 < 24$
The indices are reversed, so we stop

pivot = 24

9 21 16 38 55 49 36 57 68 81 85 63 79 74 85 97 61 77 70 76
Quick Sort Example

We move 38 to the vacant location and move the pivot 24 into the location previously occupied by 38
- 24 is now in the correct location
Quick Sort Example

We will now recursively call quick sort on the left and right halves of those entries which are < 57
Quick Sort Example

The first partition has three entries, so we sort it using insertion sort.
Quick Sort Example

The second partition also has only four entries, so again, we use insertion sort.
Quick Sort

Quick Sort Example

First we examine the first, middle, and last entries of the sub-list

pivot =

9 16 21 24 36 38 49 55 57 68 81 85 63 79 74 85 97 61 77 70 76
Quick Sort Example

We choose 74 to be our pivot
We move 76 to the vacancy left by 74
Quick Sort

Quick Sort Example

We search forward until we find $81 > 74$
We search backward until we find $70 < 74$

pivot = 74
Quick Sort Example

We swap 70 and 84 placing them in order

pivot = 74

9 16 21 24 36 38 49 55 57 68 70 85 63 79 76 85 97 61 77 81
Quick Sort Example

We search forward until we find $85 > 74$
We search backward until we find $61 < 74$
Quick Sort Example

We swap 85 and 61 placing them in order

pivot = 74

9 16 21 24 36 38 49 55 57 68 70 61 63 79 76 85 97 85 77 81
Quick Sort Example

We search forward until we find $79 > 74$
We search backward until we find $63 < 74$
The indices are reversed, so we stop

[pivot = 74]

\[
\begin{array}{cccccccccccc}
9 & 16 & 21 & 24 & 36 & 38 & 49 & 55 & 57 & 68 & 70 & 61 & 63 & 79 & 76 & 85 & 97 & 85 & 77 & 81
\end{array}
\]
Quick Sort Example

We move 79 to the vacant location and move the pivot 74 into the location previously occupied by 79.
74 is now in the correct location.

pivot = 74

9 16 21 24 36 38 49 55 57 68 70 61 63 74 76 85 97 85 77 81 79
Quick Sort Example

We sort the left sub-list first

It has four elements, so we simply use insertion sort
Having sorted the four elements, we focus on the remaining sub-list of seven entries.

```
9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 85 97 85 77 81 79
```
Quick Sort Example

To sort the next sub-list, we examine the first, middle, and last entries.

pivot = 9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 85 97 85 77 81 79
Quick Sort

Quick Sort Example

We select 79 as our pivot and move:
- 76 into the lowest position
- 85 into the highest position

pivot = 79

9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 85 97 85 77 81
Quick Sort Example

We search forward until we find $85 > 79$
We search backward until we find $77 < 79$
Quick Sort Example

We swap 85 and 77, placing them in order

pivot = 79

[Image of a sorted array with 85 and 77 swapped]
Quick Sort Example

We search forward until we find $97 > 79$
We search backward until we find $77 < 79$
The indices are reversed, so we stop

pivot = 79

9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 77 97 85 85 81
Quick Sort Example

Finally, we move 97 to the vacant location and copy 79 into the appropriate location
- 79 is now in the correct location
Quick Sort Example

This splits the sub-list into two sub-lists of size 2 and 4.
We use insertion sort for the first sub-list.
Quick Sort Example

We are left with one sub-list with four entries, so again, we use insertion sort.
Quick Sort Example

Sorting the last sub-list, we arrive at an ordered list

9 16 21 24 36 38 49 55 57 61 63 68 70 74 76 77 79 81 85 85 97