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Abstract—1In this paper we present a real-time method for
identification of the dynamic parameters of a manipulator and
its load using kinematic measurements and either joint torques
or force and moment at the base. The parameters are estimated
using the Extended Kalman Filter and constraints are imposed
using Sigmoid functions to ensure the parameters remain within
their physically feasible ranges, such as links having positive
masses and moments of inertia. Identified parameters can be
used in model based controllers. The presented approach is
validated through simulation and on data collected with the
Barret WAM manipulator. Using the estimated parameters
instead of ones provided by the manufacturer greatly improves
joint torque prediction.

I. INTRODUCTION

Dynamic parameters (masses, centers of masses, inertia
tensors, and motor friction) describing a manipulator are
imperative for accurate model based control. Unfortunately
manufacturers often do not provide parameters for each
robot. One approach would be to measure the parameters
of each link separately, but this requires disassembly of the
robot and is time consuming. Another approach is the use a
CAD model but the variability in materials and manufactur-
ing differences make this method inaccurate, Rackl showed
that using weighted least-squares optimization for identifica-
tion outperforms using the CAD model for torque prediction
[1]. Furthermore neither disassembly nor CAD modeling
approaches provide accurate actuator friction coefficients. A
single manipulator may be required to perform a variety of
tasks and thus handle changing external loads. This leads to a
constantly changing set of parameters at the end effector. An
online parameter estimation method is desired so the model
based controller can be adapted as the manipulator handles
different objects.

Equations of motion for a manipulator depend on the
kinematic variables (position, velocity and acceleration) as
well as the parameters to be identified. Therefore any iden-
tification method relies on joint trajectories such that the
parameters have an effect on the joint torques, these are
called exciting trajectories [2]. Rackl proposed using static
poses to identify static parameters (mass and center of mass)
and generating exciting trajectories based on B-Splines to
estimate the inertia tensor [1]. Swevers used finite Fourier se-
ries as joint trajectories to allow for analytical differentiation
of the trajectory, periodic excitation, and calculation of noise
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characteristics [3]. Depending on the kinematic structure
of the robot some parameters may always appear in linear
combinations and will not be identifiable uniquely [4]. In that
case either the equations of motion in terms of the linear
combination must be derived and the linear combination
identified or a non unique solution to the parameters in the
linear combination must be found to best predict the joint
torques.

A number of previous offline and online identification
methods using equations of motion have been proposed.
Atkeson et al. used least squares to estimate the inertial
parameters of the load and the links and verified the approach
on the PUMA robot [5]. Gautier and Poignet compared
weighted least squares and Extended Kalman Filter ap-
proaches for parameter estimation of a 2 degrees of freedom
robot [6] however they did not consider constraining the
parameters. Both of the methods rely on inverting potentially
singular matrices or deriving the reduced set of identifiable
parameters, also they do not guarantee that the estimates
will be physically feasible. Mata proposed using the Gibbs-
Appell dynamic equations and optimization to ensure phys-
ical feasibility of the parameters [7], unfortunately opti-
mization techniques are computationally expensive and are
difficult to run online.

Other approaches to dynamic model identification consider
the robot as a non linear system and find the mapping
between input joint positions, velocities, and accelerations,
and the output torques. Jiang er al. used a neural network
to aid the dynamic model after an initial set of parameters
has been identified [8]. Duy Nguyen-Tuong et al. used Local
Gaussian Process Regression to learn the mapping online [9].
While the non linear approaches can accurately predict the
torques given kinematic measurements they do not compute
the parameter values explicitly and thus may not generalize
to all regions of the manipulator state space.

In this paper we present a real time method to estimate
the dynamic parameters of a manipulator and its load using
kinematics measurements (joint positions, velocities, and
accelerations) as well as joint torques or force and moment
at the base of the robot. The parameters to be estimated
are set as the state vector of the Extended Kalman Filter
(EKF) and we propose the use of Sigmoid functions to satisfy
constraints. EKF ensures that segment inertial parameters
will converge to a steady value and only parameters which
are excited by the motion will update. Derivation of the
complex linear inverse dynamic model is avoided by relying
on the Recursive Newton Euler method. The algorithm is
validated in simulation to show convergence to the correct
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parameters of links and load as well as on real data from the
Barret WAM robot showing that the estimated parameters
significantly improve torque prediction.

The paper is organized as follows: Section II introduces
the equations of motion for manipulators showing why
parameter estimation is necessary for model based control.
Section III describes the formulation of the Extended Kalman
Filter with constraints to estimate the dynamic parameters.
Section IV describes the results using both simulated and
actual robot data. Finally Section V presents the conclusion
and discussion.

II. BACKGROUND

A common approach to model manipulators is to use the
Euler Lagrange equations of motion to express joint torques
in terms of the difference between kinetic and potential en-
ergy. The energies can be computed from the joint positions,
velocities, accelerations and the dynamic parameters, mass
m;, first-order moment m;r; where r; are the coordinates
of the center of mass, and inertia tensor I;, of each link. In
matrix form the equations are written as

D(q)i+Clq,4)q+G(q) =T ¢))

Where q, ¢, , T are the joint positions, velocities, acceler-
ations, and torque, D(q) is configuration dependent inertia
matrix, C'(g, ¢) contains Coriolis and centrifugal effect terms,
and G(q) is the gravitational force [10]. Many previous
methods rely on reformulating (1) as a linear equation of
the dynamic parameters

y(1,q) = ¢(q,4,4)p (2)

where p is the vector of parameters [5].
To control a manipulator equation (1) is re-written in terms
of control input uy, at each joint

(D(q)+J)i+C(q,9)4+ Bi+G(q) = u 3)

where J and B describe the motor inertia and damping
friction coefficients respectively and u is the control input.
Thus for model based control it is important to accurately
estimate the dynamic parameters of each link and friction
coefficients of each joint.

III. PROPOSED APPROACH

Extended Kalman Filter (EKF) is used to adapt the dy-
namic parameters of the manipulator model based on noisy
joint position, velocity, acceleration, and torque measure-
ments. In order to constrain the parameters we propose to
use a Sigmoid function to map the unconstrained EKF state
vector into constrained parameter space. The measurement
Jacobian of the Kalman filter ensures that only the parameters
which are excited by the trajectory of the manipulator are
estimated.

A. Extended Kalman Filter formulation

The Extended Kalman Filter is a common sensor fusion
technique used to estimate the state of a system given noisy
measurements by minimizing the trace of the error covari-
ance matrix P. The next state estimate s; and measurement
update z; are defined by

s¢ = f(s¢-1) +wi—1 “4)
Zt = h(St) + vg. (5)

where f is the process relating the previous state to the
next and h relates the measurement to the state. w and
v are zero mean Gaussian process and measurement noise
with covariances Q and R respectively. Linearizing the
state update and measurement prediction equations about the
operating point EKF approximates the system as

z¢ = Zg + M(sg — S¢) + Vi (6)
St & 8¢ + A(sg — 5¢) + We—1, (N

where A and M are the Jacobians of the state update and
measurement equations with respect to the state s, S is
the noiseless state estimate, z is the noiseless measurement
estimate [11].

B. EKF State Vector

The subset of the inertial parameters we want to estimate
is the mass m;, first-order mass moment m;r;, friction
coefficients B, and the moments of inertia [I; z51; yyli -]
at the center of mass for each link ¢ of the manipulator.
Writing the inertia tensor in the frame of the principal axes
of inertia, we can omit estimating the off diagonal elements.
It is important to note that the masses and moments of inertia
must be positive to be physically consistent and guarantee
asymptotic tracking using PD control [12]. For this reason
we propose to use a Sigmoid function to map from the EKF
state to the inertial parameters.

Consider the mapping from EKF state variable x; to the
inertial parameter p; through the Sigmoid function

ap — bk
1+ e=c®k

where aj is the upper bound, by is the lower bound and
¢ controls the slope. This constrains py within the (b, ax)
region without solving the optimization problem. To initialize
EKF state using initial guess of the inertial parameters for
each link the inverse of the Sigmoid functions is used

pr = Sig(xy) = + by, 8

) = In(ay, — px) — In(px — bk’).

zy, = Sig;, ' (pw 9)

Thus state vector s; is defined as

St = [Sig_l(ml:n Il:n,a::r Il:n,yy Il:n,zz minT1l:n Bl:n)}
(10)

where separate Sigmoid functions are chosen to place bounds
on each dynamic parameter and friction coefficient. The
effect of the Sigmoid bounds on EKF tracking is shown in
figure 1.
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Sigmoid Constrained EKF
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Fig. 1. Demonstrates constraining EKF using the Sigmoid function. In this
example EKF is set up to track the position and velocity of one dimensional
particle experiencing sinusoidal motion. The state vector s maps through
Sigmoids with bounds (-0.7, 0.7) and (10,-10) to the position = and velocity
& respectively. It is assumed that actual position and velocity can be directly
measured. The EKF tracked position does not leave the imposed bounds and
provides accurate tracking within.

Since the estimated parameters are constant the state
update equation is

(1)

St = St—1
and it’s Jacobian A is the identity matrix.

C. EKF Measurement Vector

We first consider manipulators that have encoders and
torque sensors providing a measurement of the position ¢,
velocity ¢, acceleration §;, and torque 7 of each joint at each
time step. While encoders are relatively accurate, especially
for direct-drive manipulators, torque measurements often
contain a lot of noise. Thus we define the noisy measurement
vector of EKF as the torque at each joint and assume
position, velocity, and acceleration are known. Given ¢, ¢,
gt, the Recursive Neuton-Euler (RNE) algorithm works as
follows to predict the force f; and torque z; experienced by
each joint:

First, the forward kinematics algorithm is used with g, ¢,
and ¢ from the encoders to compute the linear acceleration
a;, angular velocity w;, and angular acceleration w; of each
link. Then starting at the end effector and working backwards
to the base, the torque 7; and force f; experienced by each
link are computed as

fi = Rl fiyr +mia; —mig; (12)
Ti = Ri 1 Zigr — fi xri + (Riyq fig1) X 1ig1
+ s +w; x (Lw;) + Bids (13)

where R!_, is the rotation matrix from frame i+ 1 to frame
i, g; is gravity expressed in frame ¢ and I; is the moment
of inertia tensor about the joint computed using parallel axis
theorem

ji = Il —+ mi(T?Ti13x3 — mriT) (14)

1 is the identity matrix [13].

The parameters m;, ;, I;, and B; are computed as Sig(s;)
using appropriate Sigmoid functions. The RNE algorithm has
the benefit over the full equations of motion shown in (1)
since only the structure of the robot must be known and the

derivation of the inertia and Coriolis matrices is not necessary
making it easy to use for multiple different manipulators.

Unfortunately many manipulators do not have torque sen-
sors built into the joints but only encoders. However as long
as measurement prediction and measurement Jacobian equa-
tions are available EKF can update the state. For example it
is also possible to rewrite equation (1) in terms of the force
experienced by the end effector:

T (@)[D(@)i+ Clg,d)q + 9(a)] = F (15)
where J is the generalized Jacobian inverse [14]. Therefore
while the manipulator is not in a singular configuration the
force and moment at the end effector can also be used as
the measurement vector for the EKF. Furthermore Ayusawa
and Venture [15] showed that the set of inertial parameters
appearing in the under-actuated base equations of motions
is equivalent to whole body equations of motions. Thus
it is also possible to estimate the inertial parameters for
manipulators using only the force and moment at the base
as the measurement vector for EKF.

D. Measurement Jacobian

The measurement Jacobian M is defined as the derivative
of the measurement z; with respect to the state vector s;. In
terms of estimated parameters the derivative can be written
as

O _ 9z Sigls) _ Oz cla— bl

= = 1
Osy Op 0Osy Op (et +1)2 (16)

If a parameter is not excited by the trajectory of the
manipulator, M will have a zero column and thus that
parameter will not be updated using the measurement. This
is beneficial as it is difficult to generate trajectories which
excite all of the parameters simultaneously. Similarly as a
parameter pj;, approaches it’s bounds (by,ay) the derivative
of the Sigmoid approaches zero leading to a zero column in
M preventing the state from diverging further.

E. EKF Parameter Settings for Steady State

The EKF algorithm requires setting the initial error co-
variance matrix P as well as the measurement and process
noise parameters R and (). By using finite Fourier series for
identification trajectories the measurement noise variance can
be computed as described in [3]. Initial error covariance is
set to a diagonal matrix Py = 1 to represent some certainty
in the initial parameters. Scaling P, ), and R equally does
not change EKF’s results thus we only consider () and R as
tuning parameters and always set P, to identity [16].

It can be shown that EKF will drive the diagonal entries of
P which correspond to states without any noise to zero and
stop updating those states [17]. However initially the state
vector should quickly adapt to the correct value. We set @
to k1 where k starts as a large value and is annealed to zero
to allow for quick parameter adaptation at the beginning of
identification and ensuring steady state convergence [16].
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Fig. 2. Model of the 7 degrees of freedom Barret WAM [19].

IV. EXPERIMENTAL RESULTS

The algorithm is evaluated in simulation and on real robot
data using the 7 degrees of freedom, antrhopomirphic, direct
drive Barret WAM manipulator [18] shown in figure 2. First
we show that the algorithm converges to accurate inertial pa-
rameters given noisy joint torques as the EKF measurement
vector and that it converges given noisy force and moment
measurement at the base as the EKF measurement vector.
Then we demonstrate that the algorithm can adapt to estimate
a load with changing inertial parameters. Finally real robot
data is used to show convergence of both dynamic parameters
and friction coefficients to values that significantly improve
prediction of torques at the joints.

A. Convergence

A simulated Barrett WAM was used to verify that the
algorithm can estimate the inertial parameters in order to
correctly predict torques at the joints. To make sure all of
the inertial parameters are excited a finite Fourier series as
described in [3] was used to generate the joint trajectories.
Using these joint trajectories and the analytical Barrett WAM
model the resulting torques at each joint are computed.

The EKF is initialized to have an error of 20 percent in
the mass and inertia estimates. The Sigmoid functions are
chosen such that mass and inertia parameters are constrained
between zero and twice the initial value, first-order moments
are constrained by the link dimensions multiplied by initial
mass. First the algorithm is tested using the generated joint
torques as the measurement vector for the EKF. Random
Gaussian noise of 1 percent of maximum torque was added
to the torques to simulate sensor noise, due to high peak
torques, 1 percent results in significant measurement noise
as shown in figure 4. Figure 3 shows the error in mass
estimates after running the algorithm for 40 seconds with
a sampling rate of 100Hz. Table I shows the root mean
squared error (RMSE) of joint torque estimates using the
initial parameters with 20 percent error and those estimated
by EKF. Next the algorithm was tested using generated force
and moment at the base as the measurement vector, similarly
random Gaussian noise of 1 percent of maximum was added.
Using force and moment at the base allows to identify mass
of the base and the first link but light links have very little
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Fig. 3. Describes the amount of noise added for simulation experiments.
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Fig. 4. EKF successfully estimates masses of each link for the Barret

WAM using joint torques as measurement vector. Due to the structure of
the robot masses of the first two links have no effect on joint torques thus
EKF does not modify those parameters and the error stays at 20 percent,
they are omitted from the figure. Since centers of mass and masses appear
in linear combinations in the equations of motion for this test the centers of
mass were excluded from the EKF state and were assumed known. A link’s
parameters are only excited by the torques applied to the joints before the
link thus Kalman gain is zero for any torque in the joint after the link. This
directly effects the rate of convergence and parameters of links appearing
later in the chain converge faster.

effect on the force and moment thus EKF does not update
their mass and error stays close to the initial 20 percent,
figure 5 shows the results.

B. Adapting to Changing Dynamics

Manipulators are designed to interact with the environment
thus the dynamics of the end effector are expected to
change during the performance of a task. To demonstrate
the adaptability of the algorithm we consider the Barrett
WAM picking up an object of unknown inertial parameters.
For this scenario it is assumed that the parameters of the
other links were estimated beforehand. Accordingly the EKF
state is modified to only represent the end effector’s dynamic
parameters [m° Iz I+ I2¢]. The upper and lower bounds
of the Sigmoid functions for mass and inertia are set to (0,4)
and (0,0.2) respectively to allow for the maximum payload
rating for the manipulator of 4kg. The measurement vector is
kept as the joint torques. The process noise () is not annealed
over time as it is undesirable for the state to converge to a
steady value since the mass at the end effector may change
as the robot picks up and releases the object.

In the experiment at first the robot is not moving and is
in a configuration such that the mass of the end effector
is observable. Thus even without any trajectory the mass
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TABLE I
COMPARISON BETWEEN PREDICTED TORQUES AT EACH JOINT USING
INITIAL GUESS OF INERTIAL PARAMETERS AND THE PARAMETERS
ESTIMATED BY EKF.

Joint  Initial RMSE (Nm) EKF RMSE (Nm)

1 2.9287 0.3124

2 6.3368 0.5034

3 1.2659 0.1167

4 1.5763 0.1831

5 0.1781 0.0425

6 0.3962 0.0471

7 0.003 0.0013

Estimated Mass Percent Error
0.4
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) —Link1
E 03 —Link2
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o Link5
Qo1 —Link6
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Fig. 5. EKF quickly adapts the mass parameters to reduce the error from
20 percent using only force and moment on the base as measurement. Note
that in this scenario parameters of the base itself are observable unlike
when torque is used as the measurement vector. However EKF does not
successfully identify the masses of the two lightest links 5 and 7, 0.1238
and 0.0686 kg respectively as they have negligible effect on the moment
and force at the base.

is tracked while the unobservable inertia parameters remain
constant. Once the manipulator lifts the object it begins
to perform an exiting trajectory. At this time the inertia
parameters are excited by the motion and become observable.
Figure 6 shows the ability of EKF to track load parameters.
For the 7 degrees of freedom Barret WAM the EKF can
update end effector parameters at 128Hz.

C. Real Data

To evaluate the accuracy of the algorithm on a real robot
we used the Barret WAM data-set described in [9]. This data-
set contains torques and kinematic measurements designed
for learning the dynamic model using non-linear methods.
Excitation of each parameter was verified by looking for
non-zero entries in the measurement Jacobians throughout
the trajectory. Due to the kinematic structure of the robot,
the parameters of the base as well as the center of mass
along the y axis, and moments of inertia in the X and z
axes of the first link were not identifiable. The EKF ran
using 9000 training samples. Next, the steady state parameter
values were evaluated on 3000 previously unseen points
of the same motion as well as 3000 points of the motion
preformed 4 times faster. EKF successfully converges to a set
of parameters that greatly improve torque prediction at each
joint and performance remains consistent between different
motions showing generalization across the manipulator state
space. The estimated parameters are successfully kept in the
bounds imposed by the Sigmoid function. Figure 7 compares

End Effector Mass Tracking
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Fig. 6. In this simulation at first the robot is set in a stretched out arm

configuration and is not moving, at 2.6 seconds the end effector parameters
are changed to simulate lifting a box of dimensions 0.4m by 0.3m by 0.2m
and weighing 3kg, at this point mass is observable but inertia parameters
are not. This results in the mass being estimated correctly even while the
robot is not moving, while the inertia parameters cannot be estimated in
the segment from 2.6 to 3.6s, while the robot is at rest. At 3.6 seconds
the box is lifted and the robot begins moving by performing an exciting
trajectory. As soon as this occurs inertia parameters become observable and
quickly converge to the correct value. At 6.6 seconds the box’s mass begins
to decrease until it reaches 1kg at 9.6 seconds.

Mass Convergence of Link 7

—EKF

—Sigmoid EKF
---Upper Bound
---Lower Bound

A

mass (kg)

0 10 2

0 _ 30 40 50
Time (s)

Fig. 7. Without the Sigmoid function mapping, applying EKF to real
robot data leads to negative mass and inertia estimates or estimates outside
of acceptable bounds. The Sigmoid function mapping ensures the mass and
inertia stay positive and the center of mass is within the link’s bounds.

mass estimation with the proposed approach to regular EKF,
figure 8 shows the parameters converging to a steady state
value, and figure 9 shows the resulting improvement in
torque prediction for two of the joints. Table II contains
the numerical results. We attribute the remaining error to
parameters that are not estimated by EKF such as link
lengths, stiction, motor backlash, and possibly non zero mean
Sensor noise.

V. DI1SCUSSION AND CONCLUSION

In this paper we presented a new approach to estimate the
dynamic parameters of a manipulator and its load using the
Extended Kalman Filter. To impose constraints a mapping
between the filter’s state and parameters through a Sigmoid
function was introduced. The Kalman filter ensures conver-
gence to steady state and that only parameters activated by
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Fig. 8. This figure describes the typical performance on real robot data.
Each of the parameters quickly adapts to a value that significantly improves
torque prediction as seen in table II.

TABLE 11
ROOT MEAN SQUARED ERROR BETWEEN PREDICTED TORQUES AT
EACH JOINT USING INITIAL PARAMETERS AND PARAMETERS ESTIMATED
BY EKF USING REAL ROBOT DATA. IN THIS DATASET ONLY JOINTS 1, 2,
3, AND 4 EXHIBIT TORQUES GREATER THAN 1 NM.

Regular Motion

Joint  Initial RMSE Nm EKF RMSE Nm
1 2.88 1.74
2 7.48 1.04
3 0.95 0.51
4 2.85 0.41
5 0.24 0.13
6 0.19 0.13
7 0.09 0.06

4x Fast Motion

Initial RMSE Nm EKF RMSE Nm
1 2.88 1.76
2 7.60 1.93
3 0.95 0.51
4 2.87 0.64
5 0.25 0.13
6 0.19 0.13
7 0.09 0.06

the trajectory will be updated. The approach was validated
both in simulation and real robot data. Future work includes
using Dual EKF to deal with noisy kinematic measurements
and testing the approach on real robot with a force and
moment sensor on the end effector as well as combining joint
torques with forces on the base as measurement to improve
parameter estimation of the base links.
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