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Abstract— Many assessment and diagnosis protocols in re-
habilitation, orthopedic surgery and sports medicine rely on
mobility tests like the Single Leg Squat (SLS). In this study,
a set of three Inertial Measurement Units (IMUs) were used
to estimate the joint pose during SLS and to classify the
SLS as poor, moderate or good. An Extended Kalman Filter
pose estimation method was used to estimate kinematic joint
variables, and time domain features were generated based on
these variables. The most important features were then selected
and used to train Support Vector Machine (SVM), Linear
Multinomial Logistic Regression, and Decision Tree classifiers.
The results of feature selection highlight the importance of
the ankle internal rotation (IR) angle in classifying SLS.
Classification results on a human motion dataset achieved an
accuracy of 98% for the two-class problem using SVM, while
for 3 class classification, the maximum accuracy was 73% using
Decision Tree.

I. INTRODUCTION

The Single Leg Squat is a mobility test usually used for
orthopedic knee surgery assessment, sports medicine, and
rehabilitation [1]. During the SLS test, a key indicator of
performance is the degree of knee movement out of the
sagittal plane. Inward movement of the knee is known as
medial knee displacement or Dynamic Knee Valgus (DKV).
DKV is a risk factor for non-contact Anterior Cruciate
Ligament (ACL) injury and patellofemoral pain [2]. Almost
250,000 ACL injuries occur in the USA yearly with an
average annual cost of more than 2 billion dollars [3]. An
automated assessment method can help with early detection
of DKV among young athletes and with identifying those at
higher risk of injury, and assist orthopedic and rehabilitation
professionals with patient assessment and provide a record of
past performance, leading to better treatment protocols. The
goal of this study is to develop an automated assessment
system to distinguish between good, moderate, and poor
squats.

SLS analysis has been the subject of several clinical and
sport medicine studies. Bittencourt et al. [4] investigated the
Frontal Plane Knee Projection Angle (FPKPA) during SLS
and at the moment of double leg jump landing for 173 young
athletes using a motion capture system. Other measurements
included the isometric strength of the dominant-limb hip
abductors, the passive range of motion (ROM) of the hip
internal rotation (IR), and shank-forefoot alignment. These
measurements together with participant sex were input into a
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Decision Tree classifier in order to determine which of these
factors predict high FPKPA. High FPKPA was detected by
decreased hip abductor torque and increased passive ROM
of the hip IR.

Zeller et al. [5] analyzed 18 athletes (9 male, 9 female)
performing 5 consecutive SLS while wearing both markers
and surface electrodes to measure their hip muscle activity.
The ROM was obtained from markers and was analyzed
using one-way analysis of variance. Women showed more
medial knee displacement in SLS than men, which was
associated with more ankle dorsiflexion, ankle pronation, hip
adduction, hip flexion, hip external rotation, and less trunk
lateral flexion.

While the above studies focused on identifying the corre-
lates of DKV, fewer studies have attempted to automatically
classify SLS. Whelan et al. [6] applied a single IMU worn on
the lumbar vertebra to classify SLS as correct or incorrect for
a dataset of 19 healthy volunteers. Labels were provided by
an expert physiotherapist for each repetition. Time domain
characteristics of accelerometer and gyroscope outputs, ac-
celerometer magnitude, and sensor orientation were used as
descriptive features for the classifier, which resulted in 92.1%
accuracy with repeated random-sample validation. Although
they showed promising results for the two class problem,
they do not report any results for Leave One Subject Out
cross validation (LOSO-CV), which is a requirement for
clinical applications where previously unseen participants are
to be assessed. Moreover, defining features based on direct
acceleration and gyroscope output signals makes clinical
interpretation and analysis difficult.

II. APPROACH

In this study, an approach for automated SLS classification
based on joint kinematics is proposed. First, an Extented
Kalman Filter based method [7] is used to estimate ankle,
knee, and hip kinematic parameters during SLS from IMU
measurements. Time domain features are then extracted from
these measurements; the most informative ones are selected
via feature selection. Based on an expert labeled dataset,
classifiers are then trained to distinguish between good, poor
and moderate squats.

A. Pose Estimation

To develop an automated DKV assessment system suitable
for clinical use, it is preferable to measure joint angles,
as they best describe the occurrence of DKV in clinically
interpretable terms. For this purpose, we adapted the pose
estimation algorithm proposed in [7] to estimate the joint
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angles, velocities and accelerations during SLS using IMUs.
A kinematic model of the lower leg, consisting of a 3 Degree
of Freedom (DOF) ankle joint, 1 DOF knee joint, and 3
DOF hip joint (as depicted in Fig. 1) (left) and the IMU
measurements were fused via an Extended Kalman Filter to
recover the joint angle, velocity, and acceleration of each
DOF. See [7] for details.

Fig. 1. 7 DOF kinematic model of the left leg (left) and sensor placement
(right), The kinematic link lengths were either measured or obtained from
the motion capture marker information.

B. Feature Generation

Various feature extraction methods have been used for
human activity recognition [8]. The mean, standard deviation
(STD), variance (VAR), interquartile range (IQR), mean
absolute deviation (MAD), correlation between axes, entropy,
and kurtosis are among the time domain features commonly
used for activity recognition from the acceleration signal [8].
In a similar review, Preece et al. [9] have identified the mean,
median, variance, skewness, kurtosis and interquartile range
as commonly used time domain features.

In the present study, we generate all of the commonly
used features and use feature selection techniques to identify
the best features from the data. The features generated in
this study include: the mean, root mean square (RMS),
STD, VAR, MAD, skewness, kurtosis, range, minimum, and
maximum of the joint angle, velocity and acceleration of
each DOF during each repetition of a SLS.

C. Feature Selection

The purpose of feature selection in this study is not only to
reduce the dimensionality, but also to identify which factors
are best predictors of DKV. Due to the importance of feature
selection, 18 different feature selection techniques were tried
and those identified by the majority of the methods were
chosen as the selected features. To identify the majority,
features which were among the top 10 ranked by each
algorithm and repeated more than 8 times (selected by at

least half of the methods as the top ten) were reported as the
best predictors of DKV. In addition to the feature selection
methods, SPCA was also applied to the data for comparison.

For feature selection, available MATLAB packages from
Arizona State University [10] and from Pohjalainen et al.
[11] were used. Pohjalainen's package included five dif-
ferent techniques: Mutual Information, Statistical Depen-
dency, Random Subset Feature Selection, Sequential Forward
Selection, and Sequential Floating Forward Selection. The
ASU package included 12 techniques: Correlation based
Feature Selection, ChiSqaure, Fast Correlation-Based Fil-
ter, Fisher Score, Gini Index, Information Gain, Kruskal-
Wallis, Minimum-Redundancy-Maximum-Relevance selec-
tion, Relief-Feature selection strategy, Sparse Multinomial
Logistic Regression via Bayesian L1 Regularization, T-test,
and the Bayesian logistic regression. Least Absolute Shrink-
age and Selection Operator (LASSO) was also implemented
using MATLAB's default function. For SPCA, the MATLAB
code developed by Barshan et al. [12] was utilized.

D. Classification

Three different classifiers, the Support Vector Machine,
Linear Multinomial Logistic Regression, and Decision Tree,
were tried for both the 2 class and 3 class classification
problems. All classifiers were implemented using MATLAB
R2014b. SVM was selected as it is robust to small train-
ing data size. For 3 class classification, one-versus-all and
one-versus-one SVM with linear kernel were implemented.
SVM multi-label results were computed by majority vote
between one-vs-one classification results. The Decision Tree
is beneficial as it provides threshold values (cutoff points) in
the selected features which can be informative for clinical
interpretation.

III. EXPERIMENTS

Seven participants (6 male, 1 female, mean age 32.3±11.6
years) took part in this study. Inclusion criteria were adults
not having any lower back or leg injuries in the past six
months. The experiment was approved by the University of
Waterloo Research Ethics Board, and all participants signed
a consent form prior to the start of data collection.

A. Data Collection

Three Yost [13] IMU sensors were affixed to the par-
ticipant using hypoallergenic tape. Sensor placement sites
included the low back at the level of the first sacral vertebra,
the anterior thigh 10 cm above the patella aligned with
the sagittal plane, and the lower leg on the flat surface of
the tibia at the level of the tibial tubercle, as illustrated
in Fig.1(right). Due to wireless communication, sampling
rates were not consistant or identical for all sensors. The
average sampling rate was 90±10 Hz. All sensors were
interpolated and resampled to the same rate (100 HZ).
Participants were instructed to remove their shoes and socks,
and stand on their dominant leg (the leg they would kick a
ball with) with toes pointing straight ahead, while keeping
their weight centered over the ball of the foot and their
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arms crossed in front of their body. In each trial, participants
performed five consecutive cycles of the SLS movement. For
the SLS collection to be deemed successful, the subject had
to perform the squat without allowing the legs to contact
each other, and without losing balance (ie. without having
the non-weight bearing leg touch the ground).

B. Data Labeling

Three of the participants replicated good, poor, and mod-
erate squats under the instruction and supervision of an
expert clinician; the other participants performed the squats
naturally. The naturally performed squats were labelled by an
experienced movement scientist using a modified qualitative
SLS clinical rating tool [14]. A SLS was rated ”good” if
DKV did not occurr during the squat or if DKV occured,
the patella did not have a trajectory that pointed towards the
second toe; ”moderate” if the patella pointed toward or past
the second toe, but did not point past the inside aspect of the
foot; and ”poor” if the patella pointed past the inside aspect
of the foot. To ensure a balanced dataset, we made use of
all the natural squats (which were mostly bad or moderate)
and supplemented with the replicated exemplars.

The number of trials was not the same for all participants.
There were 7 labeled trials available from participant 2
(3 good, 1 moderate and 3 poor), 6 from participant 1
and participant 3 (1 good, 1 poor, and 1 moderate for
each), 1 from participant 4 (poor), 2 from participant 7
(moderate), 3 from participant 5 (2 poor and 1 good) and
1 from participant 6 (moderate). Each trial consisted of 5
consecutive squats, which resulted in 100 examples of SLS
including 30 examples of good, 30 examples of moderate,
and 40 examples of poor squats.

Given the 7 DOF kinematic model, where each DOF
includes an estimate of its position, velocity, and accel-
eration, the total number of features for each segment or
observation was 210. Therefore, our final data set had
100×210 dimensions. Another dataset was also produced
with the same features, but including only good and poor
data (i.e., excluding the moderate SLS data) which had 70
observations. All data was normalized to bring values in [0
1] range. Zero velocity crossing criteria [15] were used to
segment continuous time series data into five squats.

IV. RESULTS AND DISCUSSION

The feature selection results are summarized in Table I.
The feature selection results highlight the importance of the
ankle IR angle features for differentiating good, moderate
and poor squats. Although according to clinical studies [4],
[5], the hip plays an important role in DKV, the feature
selection results in this study suggest that good classification
can be performed based on only the ankle kinematics.
Possible explanations for the finding that the hip data is not
as informative as the ankle for classification include the large
variability in hip joint movements between different subjects
(independent of squat quality) or a larger error in the pose
estimation for the hip parameters. Further analysis with a

larger dataset and a larger number of participants is needed
to confirm this finding.

TABLE I
FEATURES RANKED AS TOP TEN BY MORE THAN 8 FEATURE SELECTION

TECHNIQUES.

Selected features For 2
class problem

N r Selected features For 3
class problem

N r

ROM of ankle IR 14 STD of ankle IR angle 13
STD of ankle IR angle 11 VAR of ankle IR angle 13
MAD of ankle IR angle 11 MAD of ankle IR angle 13
VAR of ankle IR angle 10 ROM of ankle IR 12
RMS of ankle IR vel. 9
MAD of ankle IR vel. 9
RMS of ankle adduc. acc. 9
N r: Number of times ranked as top ten features

Classification results for 2 class and 3 class problems are
reported in Table II for both 10 fold CV and LOSO cross val-
idations. For reporting the accuracy, the number of selected
features or Principal Components (PCs) in SPCA was set to
one first and accuracy was calculated. Then, the number of
features or PCs was increased one by one up to the point that
further increases did not improve performance. The reported
accuracies are the best performance each classifier achieved.
Matrix inversion with the full dimensional dataset was not
possible with LMLR; therefore no results are reported for
this condition.

Analysis of the decision tree results using majority se-
lected features shows that for both LOSO and 10 fold CV,
the best performance was achieved using only the ankle IR
ROM feature for the 2 class problem, while for the three class
problem, ROM and MAD of the ankle IR angle resulted in
best accuracy for LOSO CV and STD and MAD of the ankle
IR angle for 10 fold CV. The decision tree structure for the
2 and 3 class problems is shown in Fig. 2.

Fig. 2. Decision Tree structure for LOSO cross validation for the 3
class (right) and 2 class (left) problems, where x1 corresponds to ankle
IR ROM and x2 corresponds to MAD of ankle IR angle. For the 2-class
problem, poor squats are detected when ankle IR ROM (x1) is greater than
0.38 rad (20.63◦). For the 3-class problem, MAD (x2) of ankle IR angle
greater than 0.26 rad (14.9◦) identifies good squats. MAD of ankle IR angle
less than 14.9◦ indicates either moderate or poor squats, which are again
differentiated based on ankle IR ROM (x1).

The classification results in Table II show very good
accuracy for almost all of the classifiers in the 2 class
classification problem, which suggests that differentiation
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TABLE II
ACCURACIES (%) FOR THE 2-CLASS AND 3-CLASS CLASSIFICATION PROBLEMS USING THREE CLASSIFIERS AND TWO DIFFERENT CROSS-VALIDATION

METHODS

# of Classes Validation method 10 Fold CV LOSO CV
Dimensionality

reduction method Majority Selected
features

SPCA No reduction Majority Selected
features

SPCA No reduction

2 class
SVM 95.7143 98.5714 99.7143 88.5714 98.5714 75.7143
Logistic Regression 93.5714 98.5714 — 91.4286 98.5714 —
Decision Tree 92.4286 98.5714 95.8571 87.1429 98.5714 81.4286

3 class

SVM good vs all 91.8 84.7 98.1 91 83 79
SVM poor vs all 77.8 87.4 96.9 75 82 72
SVM moderate vs all 64.8 77.5 87.2 62 74 42
SVM good vs moderate 91.6667 100 99 91.6667 73.3333 62.3333
SVM poor vs moderate 70.1429 90 96.7143 67.1429 80 50
SVM good vs poor 93.7143 97.5714 99.4286 91.4286 97.1429 75.7143
SVM majority vote 74.2 93.2 96.6 72 70 46.4
Logistic Regression 73.6 93.1 — 68 68 —
Decision Tree 70.2 83.5 77.6 62 73 68

between good and poor squats is achievable. For 10 fold
CV, the best performance was obtained with SVM using
the full dimensional data. SPCA resulted in the best per-
formance for all three classifiers in LOSO CV, indicating
that the 10-fold CV results using all the features may be
overfitted. With regard to dimensionality reduction, SPCA
in combination with all three classifiers resulted in better
accuracy than subset selection methods; however, features
extracted by SPCA are difficult to interpret clinically. For the
three class problem, again SVM using the full dimensional
data outperformed other classifiers in 10 fold CV. However,
for the LOSO cross validation, the combination of Decision
Tree and SPCA (first four PCs) resulted in the best accuracy.
As expected, classification of the moderate squat is most
difficult, showing the lowest accuracy in the one-vs-all and
moderate-vs-poor SVM results.

V. DISSCUSSION AND CONCLUSIONS

For the dataset in this study, good and poor squats of an
unseen subject were classified with 98.6% accuracy using
SVM and SPCA for dimensionality reduction. In the 3 class
case, 73% accuracy was achieved with a decision tree and
SVM. There was no significant difference in classification
performance between subjects who performed natural squats
versus those who replicated good, poor and moderate squats,
suggesting that replicated movements were similar to natural
movements. Feature selection results emphasized the ankle
internal rotation joint angle features for determining squats
quality, suggesting that it may be possible to achieve good
classification of the SLS by using only a simple 3 DOF
model to estimate ankle joint kinematics. This is advanta-
geous, as it simplifies the pose estimation and reduces the
number of sensors from 3 to 1, reducing the complexity of
the measurement apparatus and the setup and computation
procedure. Similar clinical studies [4] used time consum-
ing manual measurements and focused on only the feature
selection part, while the proposed method in this study is
completely automated and simple to apply, and therefore
more easy to apply in the clinical setting. For future work,

the proposed approach will be implemented and tested with
a larger dataset of natural squats labeled by an expert.
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