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Abstract— This paper proposes an on-line, interactive ap-
proach for incremental learning and visualization of full body
motion primitives from observation of human motion. The
human demonstrator motion is captured in a motion capture
studio. The continuous observation sequence is first partitioned
into motion segments, using stochastic segmentation. Motion
segments are next incrementally clustered and organized into
a hierarchical tree structure representing the known motion
primitives. At the same time, the sequential relationship be-
tween motion primitives is learned, to enable the generation
of coherent sequences of motion primitives. An on-line visu-

alization system is also developed to allow the demonstrator
to visualize the motion database and the motion primitives
learned by the system, thus giving the demonstrator insight
into the learning process and the ability to interactively modify
the demonstration based on the current state of the knowledge
base. The developed system has many potential applications for
motion analysis, prediction and imitation learning for humanoid
robots.

I. INTRODUCTION

The ability to extract knowledge about human motion and

motion primitives through continuous observation of human

behavior is an attractive paradigm, with many potential

applications. For humanoid robots, such a system would

enable the robot to learn how to accomplish tasks by simply

observing a human demonstrator, and therefore take advan-

tage of the similarity in body structure between humanoids

and humans, avoiding the need for explicit programming of

complex robot motions. In order to extract motion primitives

and behaviors during on-line observation, several key issues

must be addressed by the learning system: automated mo-

tion segmentation, recognition of previously learned motion

primitives, automatic clustering and learning of new motion

primitives, and finally, learning how motion primitives can

be combined into sequences to form behaviors. We have

been developing an approach for on-line segmentation and

clustering of whole body human motion primitives, and

incremental learning of the relationship between the motion

primitives for the formation of longer behaviors [1] [2] [3].

The observed motion time series data stream is first stochas-

tically segmented into potential motion primitive segments,

based on the assumption that data belonging to the same

motion primitive will have the same underlying distribution.
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The segmented motions are then passed to an incremental

clustering algorithm which forms a tree representation of

the learned motions, and abstracts each motion type into

a generative model. Concurrently, a graph model is built

representing the sequential relationship between the motion

primitives. The graph can then be used to generate new co-

herent motion sequences for the robot, based on the learned

motion primitives and the learned relationship between them.

In addition to the application to robot motion generation,

the developed automated motion primitive system can also

be utilized for motion analysis during sports training or

rehabilitation, activity detection as well as human motion

behavior understanding and prediction.

In addition to its capabilities for incremental learning and

motion abstraction, to ensure ease of use during training by

a human teacher, the system must have some mechanism

for representing and displaying the knowledge acquired so

far. In this paper we propose a system for visualizing

the motion primitive database and motion primitive graph

during acquisition. The proposed system allows the human

demonstrator or user to have a better insight into the current

status of the robot’s knowledge. The improved understanding

of the learning system and learning progress facilitates the

training process for the human demonstrator, by allowing the

demonstrator to easily grasp what the system has learned so

far and how that knowledge has been organized. The demon-

strator can use the visualized information to guide further

training, such as providing additional or corrective examples,

or modifying the training sequence to better elucidate the

sequential connections between motion primitives.

A. Related Work

Breazeal and Scasellati [4] and Schaal et al. [5] pro-

vide reviews on motion learning by imitation. As noted by

Breazeal and Scasellati, the majority of algorithms discussed

in the literature assume that the motions to be learned are

segmented and clustered a-priori, and that the model training

takes place off-line. Since the material to be learned is

defined a-priori and analyzed off line, there is little need

for online visualization of the learning process.

Nakaoka et al. [6] develop an approach for learning and

executing dance motion sequences for a humanoid robot.

They also develop a visualization system for visualizing the

behavior in simulation, prior to re-targeting the motions on a

humanoid robot. However, all the exemplar motion patterns

are acquired and grouped before the training begins, and the

number of motions to be learned is specified a priori.
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Taylor et al. [7] describe an approach for modeling human

motion using a conditional restricted Boltzmann machine

(CRBM). The learned model can generate continuous motion

sequences, as well as learn the transitions between motions.

Once the low level model consisting of individual motion

patterns has been trained, additional higher order layers can

be added to model the higher order structure of motion

patterns. However, this implies that all primitive level mo-

tions must be known and input into the model, so that the

algorithm is not able to build the model incrementally, during

on-line observation.

Jenkins and Matarić [8] describe a system for extracting

behaviors from motion capture data. In their algorithm,

continuous time series data is first segmented using the

kinematic centroid segmentation algorithm. The segmented

data is then embedded in a lower dimensional space us-

ing the spatio-temporal Isomap algorithm [9]. The lower

dimensional space can also be used to visualize the motion

data. Once the data has been reduced, it is clustered into

groupings using the ”sweep-and-prune” technique. While

this system autonomously segments and clusters data, the

algorithm cannot operate incrementally, as the entire range

of motions is required to form the lower-dimensional space

embedding.

Hidden Markov Models have been a popular technique for

human motion modeling, and have been used in a variety of

applications, including skill transfer [10], sign language and

gesture modeling [11] and motion representation [10] [12]. A

common paradigm is Programming by Demonstration (PbD)

[10]. In previous research [13], [14], [15], [16], humanoid

motion primitives have been encoded using Hidden Markov

Models, and subsequently used for motion generation. How-

ever, the initial training of the models was carried out off-

line, where all the training examples for each model were

grouped manually.

Calinon et al. [12] describe a system for programming

by demonstration based on Gaussian Mixture Models. This

system is also extended to an on-line, interactive approach

by developing a method for incremental training of the

GMM structure [17] and developing an interactive training

approach combining demonstration and kinesthetic training

[18]. However it appears that the motion segmentation is

performed manually by the trainer.

Outside the robotics community, in the computer graph-

ics domain, there has also been a long standing research

effort to develop algorithms for realistic human-line motion

generation for animated characters. Kovar et al. [19] first

proposed the motion graph technique. In this approach, a

directed graph is constructed encapsulating the relationships

between postures extracted from a motion capture data set.

The graph can then be used to generate extended sequences

of realistic looking motions. Yamaguchi et al. [20] develop

an algorithm for building a motion graph via a binary tree

clustering technique.

B. Proposed Approach

The aim of our research is to develop robots which can

learn motion primitives and higher level behaviors on-line

while observing and interacting with a human partner over

extended periods of time. Using continuous time-series data

as the input, we first segment the data into potential motion

primitives, using a modified version of the Kohlmorgen

and Lemm [21] algorithm for unsupervised segmentation.

Next, the extracted segments are input into an automated

clustering and hierarchical organization algorithm [22] [23]

[1]. Individual motion patterns are clustered in an incremen-

tal fashion, based on intra model distances. Concurrently

with the learning of the motion primitives, the relationship

between primitives is learned by forming a directed graph of

the motion primitives [3]. The motion primitive graph can

then be used for subsequent motion sequence generation.

During the acquisition of the motion primitives database,

the demonstrator is able to visualize the state of the knowl-

edge database through the visualization system. This system

provides a visual overview of the motion database, the

motion primitive graph, and individual motion primitives.

Section 2 summarizes the segmentation, clustering and mo-

tion primitive graph formation algorithms, while Section

3 describes the on-line visualization system. In Section 4,

the results of experiments verifying the algorithm on a

continuous stream of human motion capture data is reported.

Section 5 concludes the paper and provides directions for

future work.

II. ON LINE SEGMENTATION, CLUSTERING AND MOTION

PRIMITIVE GRAPH FORMATION

In the proposed approach [1], [2], [3], the on-line learn-

ing system autonomously segments, clusters and learns the

sequencing of full-body motion primitives from on-line ob-

servation of full body human motions.

A. Segmentation

First, the incoming continuous time series data is seg-

mented into potential motion primitive segments. The

Kohlmorgen and Lemm segmentation algorithm [21], [24]

is based on the assumption that data belonging to the same

motion primitive will have the same underlying probability

distribution. The incoming data stream is first embedded into

a higher-dimensional space. Next, the density distribution of

the embedded data is estimated over a sliding window of

length W , via a standard density estimator with multivariate

Gaussian kernels. As more data are observed, the distance

between successive data windows can be calculated based on

the integrated square error between two probability density

functions:

d(pt1, pt2) =

∫

(pt1(x) − pt2(x))2 dx (1)

This distance can be calculated analytically in the case of

mixtures of Gaussian density functions. The segmentation

points can then be estimated by defining a Hidden Markov

Model over a set S of sliding windows. Each window
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corresponds to a state of the HMM. For each state, the

observation probability distribution is defined as:

p(pt(x)|s) =
1√
2πς

exp(−d(ps(x), pt(x))

2ς2
), (2)

where p(pt(x)|s) is the probability of observing the window

represented by pt(x) in state s. The initial state distribution

is given by the uniform distribution, and the state transition

matrix is designed such that transitions to the same state are

k times more likely than transitions to any of the other states.

aij =

{

k
k + N − 1 if i = j;

1
k + N − 1

if i 6= j.
(3)

where N is the number of states of the HMM. The Viterbi

algorithm [25] can then be used to find the optimum state

sequence given the current set of observations. An on-line

variant of the Viterbi algorithm is also developed [21], which

incrementally builds the state path table as each new state is

observed, by re-using the the estimate of the likelihood and

optimal state sequence from the previous time step.

B. Incremental Clustering

Once the incoming time series data has been segmented

into potential primitives, each segment is sequentially passed

to the clustering module. In the proposed clustering approach

[22], [23], a hierarchical tree structure is incrementally

formed representing the motions learned by the robot. Each

node in the tree represents a motion primitive, which can be

used to recognize a similar motion, and also to generate the

corresponding motion for the robot. Within each local area of

the motion space, a standard clustering technique [26] is used

to subdivide motion primitives. A Hidden Markov Model is

used to abstract the observation sequences. The parameters of

the model form the feature set of the data. These features are

then used to define a distance measure between observation

sequences, which is used for clustering.

The algorithm initially begins with one group (the root

node). Each time a motion is observed from the teacher, it is

encoded into an HMM and compared to existing groups via a

tree search algorithm, and placed into the closest group. Each

time a group is modified, local clustering is performed within

the exemplars of the group. If a a cluster with sufficiently

similar data is found, a child group is formed with this

data subset. Therefore the algorithm incrementally learns and

organizes the motion primitive space, based on the robot’s

lifetime observations. The algorithm is overviewed in Fig. 1.

This algorithm allows the robot to incrementally learn

and classify motion primitives observed during continuous

observation of a human demonstrator. The robot’s knowledge

is organized based on the type of training received, so that

the robot’s knowledge will be most specialized in those areas

of the motion primitive space where the most data has been

observed.

Once a cluster node has been formed, the group model for

the node constitutes the abstraction of the motion primitive.

To generate a motion trajectory for the robot from the group

model, the deterministic motion generation method is used

[27]. In this method, at each time step, the state duration

is first estimated from the state transition model, and the

subsequent state is selected by a greedy policy. The output

observation vector is then generated by a greedy policy on

the output model. The resulting reference trajectory is then

low-pass filtered and passed to a low level controller, to

ensure that dynamic and stability constraints are satisfied.

C. Motion Primitive Graph Formation

Concurrently with the construction of the hierarchical

tree structure representing the motion primitives, we learn

the relationship between the primitives by constructing a

directed graph representing the observed transitions between

the primitives. Each node in the motion primitive graph

represents a motion primitive, while each edge represents

an observed transition between two motion primitives.

Initially, the graph is empty, as no motion primitives are

known at initialization. Each time a new motion primitive

is abstracted by the clustering algorithm as a leaf node

(described in Section III), a corresponding node is added

to the motion primitive graph. The incremental clustering

algorithm also performs motion recognition. When a newly

observed motion segment is placed in an existing (non-root)

node of the tree, this indicates that the motion segment

has been recognized as the motion primitive corresponding

to the selected node. A motion primitive transition model

is built incrementally by monitoring for instances when a

sequence of two motion primitives are recognized by the

incremental clustering algorithm. Each time a recognized

motion primitive transition is detected, the corresponding

edge is incremented. In this way, the robot incrementally

learns how motion primitives may be combined during

behavior execution.

The constructed graph can then be used to generate

sequences of primitives by concatenating a set of nodes

connected in the graph, for example, by searching the graph

for a valid path given a starting and target position. The graph

can also be used to generate novel sequences of primitives,

not observed from the demonstrator. In this way, the robot

can generate novel behaviors based on its known motion

primitives and their relationships.

III. VISUALIZATION

During the demonstration process, (as well as following

learning), it is important for the teacher to have visibility

into the material learned so far, so that the teacher can

tailor further demonstrations to the current knowledge of the

learner. The importance of user insight into the autonomous

system operation has already been extensively investigated

in the knowledge and data discovery community (KDD)

[28]. This research has found that the visualization of expert

system knowledge in an easily comprehensible form is a key

requirement for system useability and acceptance by human

users. In addition, in the KDD domain, the visualization of

expert system output allows the user to not only understand
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(a) (b) (c) (d) (e) (f)

Fig. 1. Overview of the Incremental Clustering Algorithm (A square represents a data sequence, and a circle represents a group). (a) a new observation
sequence is observed and encoded as an HMM; (b) the observation sequence is compared to existing groups via tree search; (c) the new sequence is placed
in the closest existing group; (d) local clustering is performed on the modified group (zoomed in view of modified group); (e) a new subgroup is formed
from similar motions in the modified group; (f) the subgroup is added to the tree as a child of the modified group.

the expert system analysis, but also to combine the au-

tonomous analysis with human analysis to achieve additional

insight. Similarly to the KDD domain, in the proposed robot

programming by demonstration approach, an autonomous

system analyzes a large corpus of demonstrator data and

extracts data abstractions in the form of motion primitives

and their sequencing. In order to enhance useability and user

acceptance of the system, both the process and the resulting

data structure should be made clearly visible to the human

user. Moreover, understanding the current knowledge of the

system allows the demonstrator to combine the insight of

the autonomous system with his or her own knowledge to

improve the training process and the resulting knowledge

base obtained by the robot learner. In this paper, we re-

port on the development of a visualization system capable

of presenting the learned data to the user on-line, during

demonstration. To the authors’ knowledge, this is the first

such system for visually presenting the robot’s acquired

knowledge to the demonstrator during on-line interaction.

Note that the visualization system is enabled by the capability

of the learning algorithm described in Section II to operate

in realtime. In the developed system, at any time during the

demonstration, as well as off-line, the human demonstrator

is able to view animations of the motion primitives acquired

thus far, an overview of the current tree structure of the

database, and a visualization of the current version of the

motion primitive graph. During the acquisition process itself,

the demonstrator views an animation of the motion currently

being executed, and is also notified when the system has

recognized the current motion primitive as one of the known

motions.

The visualization system receives the marker data from the

motion capture system directly. The marker data is next con-

verted to joint angle data via on-line inverse kinematics [29],

based on the kinematic model of the animation character.

The animation character, in terms of the body shape and the

number of degrees of freedom, can be selected based on the

requirements of the task being demonstrated in the case of

motions being acquired for human motion analysis, or based

on the kinematic structure of the robot, in the case of motions

being acquired for later re-targeting to the humanoid robot.

In the implementation described here, we select a 43DoF

model. This model was selected because it has been found

to provide a good tradeoff between model complexity and

the ability to adequately represent most daily activities [30].

The current motion of the demonstrator is displayed on the

animated character simultaneously with motion execution.

This function is useful to allow the demonstrator to verify

that the inverse kinematics is working properly and that

motions are being re-targeted to the humanoid joint angle

data correctly, without inducing representational singulari-

ties. Figure 2 shows a screen shot of the visualization system

during motion acquisition.

Fig. 2. Screen shot of the visualization software during motion acquisition

The joint angle data is then passed to the segmentation,

clustering and motion primitive graph learning algorithm, as

described in Section II. Each time a new motion primitive is

abstracted, a node is added to the tree structure representing

the current status of the knowledge database, as well as the

motion primitive graph. The tree structure and motion primi-

tive graph can be viewed at any time within the visualization

system; the formation of the first node during training is

shown in Figure 3.

Fig. 3. Screen shot of the visualization software during node formation

Each time a previously learned motion primitive is recog-

nized in the current demonstration, the visualization system

notifies the demonstrator that the performed motion is al-

ready known to the system. This is indicated (see Figure 4)

by changing the color of the identified node in the tree and

motion primitive graph. If two known motions are recognized

in succession, the motion primitive graph is updated. A
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motion primitive graph update is shown in Figure 5. The

GraphViz software [31] is used to perform online drawing

of the directed motion primitive graph.

Fig. 4. Screen shot of the visualization software during motion recognition

Fig. 5. Screen shot of the visualization software during motion primitive
formation

Once the demonstration is over, the user can load all the

learned motions (behaviors), and play them back on the

animated character to verify that motion primitives have been

abstracted correctly.

IV. EXPERIMENTS

The combined segmentation, clustering and motion prim-

itive graph extraction algorithm was tested with the visu-

alization system using data collected in the motion capture

system. To test the combined system, we collected a motion

sequence with a variety of full body motions in the motion

capture studio. The human demonstrator is outfitted with

34 reflective markers located on various parts of the body,

and the marker [x,y,z] position is captured and computed by

the motion capture system online, at a sample rate of 5ms.

The marker positioning and experimental setup are shown

in Figure 6. The demonstrator performs single and both arm

raise, bow and squat motions. The demonstrator performs

approximately 6 repetitions of each motion type.

The marker data is then passed to the combined motion

extraction and visualization system, which performs the on-

line inverse kinematics to generate joint angle data, displays

an animation character performing the demonstrator motions,

and simultaneously passes the data to the segmentation, clus-

tering and motion primitive extraction module for processing.

In previous work, a simplified inverse kinematics model was

used (20DoF), however, here we use a more realistic 40

Fig. 6. Marker Setup used for the motion capture experiments

DoF model, which is better able to capture the full range

of human motion. Screen shots illustrating the visualization

system appearance during motion acquisitions are shown in

Figures 2, 3, 4 and 5.

Following the completion of the demonstration (approx-

imately 2.5 minutes of data), the system has learned 7 of

the 10 motions demonstrated. The resulting tree structure is

shown in Figure 7. The single arm motions (both the raise

and the lower) are not yet differentiated, but are instead

grouped together in nodes 3 and 4. Further examples of

the bend raise and single arm motions result in subsequent

differentiation and abstraction of these motions as well.

Fig. 7. Final tree structure following 2.5 minutes of data. Node 1 represents
the both arms raise primitive, Node 2 represents the both arms lower
primitive, Node 3 represents left arm motions, Node 4 represents right arm
motions, Node 5 represents Squat Raise, Node 6 represents Squat Lower,
and Node 7 represents the Bend down motion

The developed system is able to autonomously extract

common motion primitives from on-line demonstration con-

sisting of a continuous sequence of behaviors, as well as

visualize the extracted motions to the demonstrator, allowing

the demonstrator insight into the learning process, and the

ability to interactively adjust further training.

V. CONCLUSIONS

This paper presents an approach for online, continuous

learning of full body motion primitives and allowable mo-

tion primitive sequencing through observation of a human

demonstrator, and an accompanying visualization system

for assisting the user during training. The observed human

motion is first converted into robot joint angle data via

online inverse kinematics. The joint angle data is then

autonomously segmented into potential motion primitives

using stochastic segmentation [21], [32]. Segmented motion

primitive candidates are incrementally clustered to abstract
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generative models of the motion primitives [2]. As each

motion primitive is learned, it is also added to a motion

primitive graph, which is incrementally updated to learn the

relationship and sequencing rules of the motion primitives.

The algorithm is capable of learning in realtime, during

observation of the demonstrator’s motions. This enables

an interactive implementation of the learning system. To

enable such an interactive learning process, a visualization

system was developed giving the demonstrator insight into

the current status of the learner. The visualization system

allows the demonstrator to visualize the training process,

by notifying the user when a new motion has been learned,

when a known motion has been recognized, and when a new

relationship between motions has been acquired. Following a

demonstration, the visualization system also allows the user

to review the material learned, and tailor future demonstra-

tions appropriately.

In future work, the system will be validated in longer

interactive sessions, with different human demonstrators,

to verify the useability of the system and to analyze the

variability in teaching style between different users. We will

also work on developing learning methods for modeling

longer sequences of primitives, which can be used to learn

longer behaviors composed of motion primitives. The robot

can then use the knowledge of these behaviors to predict

future human motion as well as offer assistance with task

execution if appropriate.
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[22] D. Kulić, W. Takano, and Y. Nakamura, “Incremental on-line hierar-
chical clustering of whole body motion patterns,” in Proc. IEEE Int.

Symposium on Robot and Human Interactive Communication, 2007,
pp. 1016–1021.

[23] ——, “Towards lifelong learning and organization of whole body
motion patterns,” in Proc. Int. Symposium of Robotics Research, 2007,
pp. 113–124.

[24] B. Janus and Y. Nakamura, “Unsupervised probabilistic segmentation
of motion data for mimesis modeling,” in Proc. IEEE Int. Conf. on

Advanced Robotics, 2005, pp. 411–417.
[25] L. R. Rabiner, “A tutorial on hidden markov models and selected

applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[26] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.
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